

The Complete MIDI 1.0
 Detailed Specification

Incorporating all Recommended Practices
document version 96.1

third edition

Published by:
The MIDI Manufacturers Association

Los Angeles, CA

IMPORTANT NOTE

This publication represents the complete documentation of
The MIDI Specification and all related Recommended
Practices as of 1996. For subsequent corrections and
additions visit https://www.midi.org/specifications.

The original "version 96.1" document produced in 1996 was a combination of the latest revisions of the
various MIDI specification documents authored and published by the MMA 1985-1996. The Second
Edition (1998) added the GM Developer Guidelines (also available on the MMA web site). A correction
was made to the Tutorial in 2006 (without changing the Edition number) and the GM Developer
Guidelines were reformatted in 2014 when preparing this PDF document (Third Edition) for publication.
This Edition also includes a reference list of Changes and Addenda made between 1996 and the date of
publication (see Appendix).

Copyright © 1995-2006 and 2014 MIDI Manufacturers Association
Portions Copyright © 1985, 1989 MIDI Manufacturers Association, Japan MIDI Standards Committee
Portions Copyright © 1995 Jim Heckroth, Crystal Semiconductor Corporation, Used with Permission

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED IN ANY FORM OR BY ANY MEANS,
ELECTRONIC OR MECHANICAL, INCLUDING INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT
PERMISSION IN WRITING FROM THE MIDI MANUFACTURERS ASSOCIATION.

PDF Presentation © 2014

MMA
POB 3173
La Habra CA 90632-3173

SECTION CONTENTS

MIDI and Music Synthesis Tutorial.................................. 004

MIDI 1.0 Detailed Specification .. 028

MIDI Time Code .. 114

Standard MIDI Files... 128

General MIDI ... 144

MIDI Show Control ... 154

MIDI Machine Control .. 196

GM Developer Guidelines... 306

Appendix ... 334

Note: This publication represents the complete documentation for The MIDI
Specification and all related Recommended Practices as of 1996. Please visit
www.midi.org/specifications for subsequent corrections and additions.

https://www.midi.org/specifications

Tutorial on MIDI

 and Music Synthesis

revised April 2006

Published by:
The MIDI Manufacturers Association

Los Angeles, CA

Rev. April 2006: Corrected NRPN/RPN text on Page 6.

Tutorial on MIDI and Music Synthesis
Written by Jim Heckroth, Crystal Semiconductor Corp.
Used with Permission

Windows is a trademark of Microsoft Corporation. MPU-401, MT-32, LAPC-1 and Sound Canvas are
trademarks of Roland Corporation. Sound Blaster is a trademark of Creative Labs, Inc. All other brand
or product names mentioned are trademarks or registered trademarks of their respective holders.

Copyright © 1995-2006 MIDI Manufacturers Association.

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED IN ANY FORM OR BY ANY MEANS,
ELECTRONIC OR MECHANICAL, INCLUDING INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT
PERMISSION IN WRITING FROM THE MIDI MANUFACTURERS ASSOCIATION.

MMA
POB 3173
La Habra CA 90632-3173

MIDI and Wavetable Synthesis Tutorial 1

Tutorial on MIDI and Music Synthesis

The Musical Instrument Digital Interface (MIDI) protocol has been widely accepted and
utilized by musicians and composers since its conception in the 1982/1983 time frame. MIDI
data is a very efficient method of representing musical performance information, and this
makes MIDI an attractive protocol not only for composers or performers, but also for computer
applications which produce sound, such as multimedia presentations or computer games.
However, the lack of standardization of synthesizer capabilities hindered applications
developers and presented new MIDI users with a rather steep learning curve to overcome.

Fortunately, thanks to the publication of the General MIDI System specification, wide
acceptance of the most common PC/MIDI interfaces, support for MIDI in Microsoft WINDOWS
and other operating systems, and the evolution of low-cost music synthesizers, the MIDI
protocol is now seeing widespread use in a growing number of applications. This document is
an overview of the standards, practices and terminology associated with the generation of
sound using the MIDI protocol.

MIDI vs. Digitized Audio

Originally developed to allow musicians to connect synthesizers together, the MIDI protocol is
now finding widespread use as a delivery medium to replace or supplement digitized audio in
games and multimedia applications. There are several advantages to generating sound with a
MIDI synthesizer rather than using sampled audio from disk or CD-ROM. The first advantage
is storage space. Data files used to store digitally sampled audio in PCM format (such as .WAV
files) tend to be quite large. This is especially true for lengthy musical pieces captured in
stereo using high sampling rates.

MIDI data files, on the other hand, are extremely small when compared with sampled audio
files. For instance, files containing high quality stereo sampled audio require about 10 Mbytes
of data per minute of sound, while a typical MIDI sequence might consume less than 10 Kbytes
of data per minute of sound. This is because the MIDI file does not contain the sampled audio
data, it contains only the instructions needed by a synthesizer to play the sounds. These
instructions are in the form of MIDI messages, which instruct the synthesizer which sounds to
use, which notes to play, and how loud to play each note. The actual sounds are then
generated by the synthesizer.

For computers, the smaller file size also means that less of the PCs bandwidth is utilized in
spooling this data out to the peripheral which is generating sound. Other advantages of
utilizing MIDI to generate sounds include the ability to easily edit the music, and the ability to
change the playback speed and the pitch or key of the sounds independently. This last point is
particularly important in synthesis applications such as karaoke equipment, where the musical
key and tempo of a song may be selected by the user.

MIDI Basics

The Musical Instrument Digital Interface (MIDI) protocol provides a standardized and efficient
means of conveying musical performance information as electronic data. MIDI information is
transmitted in "MIDI messages", which can be thought of as instructions which tell a music
synthesizer how to play a piece of music. The synthesizer receiving the MIDI data must
generate the actual sounds. The MIDI 1.0 Detailed Specification provides a complete
description of the MIDI protocol.

The MIDI data stream is a unidirectional asynchronous bit stream at 31.25 Kbits/sec. with 10
bits transmitted per byte (a start bit, 8 data bits, and one stop bit). The MIDI interface on a

2 MIDI and Wavetable Synthesis Tutorial

MIDI instrument will generally include three different MIDI connectors, labeled IN, OUT, and
THRU. The MIDI data stream is usually originated by a MIDI controller, such as a musical
instrument keyboard, or by a MIDI sequencer. A MIDI controller is a device which is played as
an instrument, and it translates the performance into a MIDI data stream in real time (as it is
played). A MIDI sequencer is a device which allows MIDI data sequences to be captured,
stored, edited, combined, and replayed. The MIDI data output from a MIDI controller or
sequencer is transmitted via the devices' MIDI OUT connector.

The recipient of this MIDI data stream is commonly a MIDI sound generator or sound module,
which will receive MIDI messages at its MIDI IN connector, and respond to these messages by
playing sounds. Figure 1 shows a simple MIDI system, consisting of a MIDI keyboard
controller and a MIDI sound module. Note that many MIDI keyboard instruments include
both the keyboard controller and the MIDI sound module functions within the same unit. In
these units, there is an internal link between the keyboard and the sound module which may
be enabled or disabled by setting the "local control" function of the instrument to ON or OFF
respectively.

The single physical MIDI Channel is divided into 16 logical channels by the inclusion of a 4 bit
Channel number within many of the MIDI messages. A musical instrument keyboard can
generally be set to transmit on any one of the sixteen MIDI channels. A MIDI sound source, or
sound module, can be set to receive on specific MIDI Channel(s). In the system depicted in
Figure 1, the sound module would have to be set to receive the Channel which the keyboard
controller is transmitting on in order to play sounds.

MIDI SOUND MODULEKEYBOARD CONTROLLER

MIDI INMIDI OUT

MIDI KEYBOARD CONTROLLER

MIDI SOUND MODULE

Figure 1. A Simple MIDI System

Information received on the MIDI IN connector of a MIDI device is transmitted back out
(repeated) at the devices' MIDI THRU connector. Several MIDI sound modules can be daisy-
chained by connecting the THRU output of one device to the IN connector of the next device
downstream in the chain.

Figure 2 shows a more elaborate MIDI system. In this case, a MIDI keyboard controller is used
as an input device to a MIDI sequencer, and there are several sound modules connected to the
sequencer's MIDI OUT port. A composer might utilize a system like this to write a piece of
music consisting of several different parts, where each part is written for a different
instrument. The composer would play the individual parts on the keyboard one at a time, and
these individual parts would be captured by the sequencer. The sequencer would then play the
parts back together through the sound modules. Each part would be played on a different
MIDI Channel, and the sound modules would be set to receive different channels. For
example, Sound module number 1 might be set to play the part received on Channel 1 using a
piano sound, while module 2 plays the information received on Channel 5 using an acoustic
bass sound, and the drum machine plays the percussion part received on MIDI Channel 10.

MIDI and Wavetable Synthesis Tutorial 3

MIDI SOUND MODULE

MIDI SEQUENCER

KEYBOARD CONTROLLER

DRUM MACHINE

MIDI SOUND MODULE

MIDI SOUND MODULE

MIDI OUT

MIDI IN MIDI OUT

MIDI IN

MIDI IN

MIDI IN
MIDI IN

Keyboard Controller

MIDI Sequencer

MIDI THRU

MIDI THRU

MIDI THRU

Sound
Module
#1

Sound
Module
#2

Sound
Module
#3

Drum Machine

Figure 2. An Expanded MIDI System

In this example, a different sound module is used to play each part. However, sound modules
which are "multitimbral" are capable of playing several different parts simultaneously. A
single multitimbral sound module might be configured to receive the piano part on Channel 1,
the bass part on Channel 5, and the drum part on Channel 10, and would play all three parts
simultaneously.

Figure 3 depicts a PC-based MIDI system. In this system, the PC is equipped with an internal
MIDI interface card which sends MIDI data to an external multitimbral MIDI synthesizer
module. Application software, such as Multimedia presentation packages, educational
software, or games, sends MIDI data to the MIDI interface card in parallel form over the PC
bus. The MIDI interface converts this information into serial MIDI data which is sent to the
sound module. Since this is a multitimbral module, it can play many different musical parts,
such as piano, bass and drums, at the same time. Sophisticated MIDI sequencer software
packages are also available for the PC. With this software running on the PC, a user could
connect a MIDI keyboard controller to the MIDI IN port of the MIDI interface card, and have
the same music composition capabilities discussed in the last two paragraphs.

There are a number of different configurations of PC-based MIDI systems possible. For
instance, the MIDI interface and the MIDI sound module might be combined on the PC add-in
card. In fact, the Multimedia PC (MPC) Specification requires that all MPC systems include a
music synthesizer, and the synthesizer is normally included on the audio adapter card (the
“sound card”) along with the MIDI interface function. Until recently, most PC sound cards
included FM synthesizers with limited capabilities and marginal sound quality. With these
systems, an external wavetable synthesizer module might be added to get better sound quality.
Recently, more advanced sound cards have been appearing which include high quality
wavetable music synthesizers on-board, or as a daughter-card options. With the increasing use
of the MIDI protocol in PC applications, this trend is sure to continue.

4 MIDI and Wavetable Synthesis Tutorial

MIDI SOUND MODULE

MIDI IN

MIDI OUT

MIDI
INTERFACE
CARD

MIDI Sequencer
Music Scoring
Games
Multimedia Presentation Packages
Educational Packages
Reference Libraries

Powered Speakers

Audio Out

Typical
Application
Software

MULTI-TIMBRAL
SOUND MODULE

{

Figure 3. A PC-Based MIDI System

MIDI Messages

A MIDI message is made up of an eight-bit status byte which is generally followed by one or
two data bytes. There are a number of different types of MIDI messages. At the highest level,
MIDI messages are classified as being either Channel Messages or System Messages. Channel
messages are those which apply to a specific Channel, and the Channel number is included in
the status byte for these messages. System messages are not Channel specific, and no Channel
number is indicated in their status bytes.

Channel Messages may be further classified as being either Channel Voice Messages, or Mode
Messages. Channel Voice Messages carry musical performance data, and these messages
comprise most of the traffic in a typical MIDI data stream. Channel Mode messages affect the
way a receiving instrument will respond to the Channel Voice messages.

Channel Voice Messages

Channel Voice Messages are used to send musical performance information. The messages in
this category are the Note On, Note Off, Polyphonic Key Pressure, Channel Pressure, Pitch
Bend Change, Program Change, and the Control Change messages.

• Note On / Note Off / Velocity

In MIDI systems, the activation of a particular note and the release of the same note are
considered as two separate events. When a key is pressed on a MIDI keyboard instrument or
MIDI keyboard controller, the keyboard sends a Note On message on the MIDI OUT port. The
keyboard may be set to transmit on any one of the sixteen logical MIDI channels, and the
status byte for the Note On message will indicate the selected Channel number. The Note On
status byte is followed by two data bytes, which specify key number (indicating which key was
pressed) and velocity (how hard the key was pressed).

MIDI and Wavetable Synthesis Tutorial 5

The key number is used in the receiving synthesizer to select which note should be played, and
the velocity is normally used to control the amplitude of the note. When the key is released,
the keyboard instrument or controller will send a Note Off message. The Note Off message
also includes data bytes for the key number and for the velocity with which the key was
released. The Note Off velocity information is normally ignored.

• Aftertouch

Some MIDI keyboard instruments have the ability to sense the amount of pressure which is
being applied to the keys while they are depressed. This pressure information, commonly
called "aftertouch", may be used to control some aspects of the sound produced by the
synthesizer (vibrato, for example). If the keyboard has a pressure sensor for each key, then the
resulting "polyphonic aftertouch" information would be sent in the form of Polyphonic Key
Pressure messages. These messages include separate data bytes for key number and pressure
amount. It is currently more common for keyboard instruments to sense only a single pressure
level for the entire keyboard. This "Channel aftertouch" information is sent using the Channel
Pressure message, which needs only one data byte to specify the pressure value.

• Pitch Bend

The Pitch Bend Change message is normally sent from a keyboard instrument in response to
changes in position of the pitch bend wheel. The pitch bend information is used to modify the
pitch of sounds being played on a given Channel. The Pitch Bend message includes two data
bytes to specify the pitch bend value. Two bytes are required to allow fine enough resolution to
make pitch changes resulting from movement of the pitch bend wheel seem to occur in a
continuous manner rather than in steps.

• Program Change

The Program Change message is used to specify the type of instrument which should be used to
play sounds on a given Channel. This message needs only one data byte which specifies the
new program number.

• Control Change

MIDI Control Change messages are used to control a wide variety of functions in a synthesizer.
Control Change messages, like other MIDI Channel messages, should only affect the Channel
number indicated in the status byte. The Control Change status byte is followed by one data
byte indicating the "controller number", and a second byte which specifies the "control value".
The controller number identifies which function of the synthesizer is to be controlled by the
message. A complete list of assigned controllers is found in the MIDI 1.0 Detailed Specification.

 - Bank Select

Controller number zero (with 32 as the LSB) is defined as the bank select. The bank select
function is used in some synthesizers in conjunction with the MIDI Program Change message
to expand the number of different instrument sounds which may be specified (the Program
Change message alone allows selection of one of 128 possible program numbers). The
additional sounds are selected by preceding the Program Change message with a Control
Change message which specifies a new value for Controller zero and Controller 32, allowing
16,384 banks of 128 sound each.

Since the MIDI specification does not describe the manner in which a synthesizer's banks are
to be mapped to Bank Select messages, there is no standard way for a Bank Select message to
select a specific synthesizer bank. Some manufacturers, such as Roland (with "GS") and

6 MIDI and Wavetable Synthesis Tutorial

Yamaha (with "XG") , have adopted their own practices to assure some standardization within
their own product lines.

 - RPN / NRPN

Controller number 6 (Data Entry), in conjunction with Controller numbers 96 (Data
Increment), 97 (Data Decrement), 98 (Non-Registered Parameter Number LSB), 99 (Non-
Registered Parameter Number MSB), 100 (Registered Parameter Number LSB), and 101
(Registered Parameter Number MSB), extend the number of controllers available via MIDI.
Parameter data is transferred by first selecting the parameter number to be edited using
controllers 98 and 99 or 100 and 101, and then adjusting the data value for that parameter
using controller number 6, 96, or 97.

RPN and NRPN are typically used to send parameter data to a synthesizer in order to edit
sound patches or other data. Registered parameters are those which have been assigned some
particular function by the MIDI Manufacturers Association (MMA) and the Japan MIDI
Standards Committee (JMSC). For example, there are Registered Parameter numbers assigned
to control pitch bend sensitivity and master tuning for a synthesizer. Non-Registered
parameters have not been assigned specific functions, and may be used for different functions
by different manufacturers. Here again, Roland and Yamaha, among others, have adopted
their own practices to assure some standardization.

Channel Mode Messages

Channel Mode messages (MIDI controller numbers 121 through 127) affect the way a
synthesizer responds to MIDI data. Controller number 121 is used to reset all controllers.
Controller number 122 is used to enable or disable Local Control (In a MIDI synthesizer which
has it's own keyboard, the functions of the keyboard controller and the synthesizer can be
isolated by turning Local Control off). Controller numbers 124 through 127 are used to select
between Omni Mode On or Off, and to select between the Mono Mode or Poly Mode of
operation.

When Omni mode is On, the synthesizer will respond to incoming MIDI data on all channels.
When Omni mode is Off, the synthesizer will only respond to MIDI messages on one Channel.
When Poly mode is selected, incoming Note On messages are played polyphonically. This
means that when multiple Note On messages are received, each note is assigned its own voice
(subject to the number of voices available in the synthesizer). The result is that multiple notes
are played at the same time. When Mono mode is selected, a single voice is assigned per MIDI
Channel. This means that only one note can be played on a given Channel at a given time.
Most modern MIDI synthesizers will default to Omni On/Poly mode of operation. In this mode,
the synthesizer will play note messages received on any MIDI Channel, and notes received on
each Channel are played polyphonically. In the Omni Off/Poly mode of operation, the
synthesizer will receive on a single Channel and play the notes received on this Channel
polyphonically. This mode could be useful when several synthesizers are daisy-chained using
MIDI THRU. In this case each synthesizer in the chain can be set to play one part (the MIDI
data on one Channel), and ignore the information related to the other parts.

Note that a MIDI instrument has one MIDI Channel which is designated as its "Basic
Channel". The Basic Channel assignment may be hard-wired, or it may be selectable. Mode
messages can only be received by an instrument on the Basic Channel.

System Messages

MIDI System Messages are classified as being System Common Messages, System Real Time
Messages, or System Exclusive Messages. System Common messages are intended for all
receivers in the system. System Real Time messages are used for synchronization between

MIDI and Wavetable Synthesis Tutorial 7

clock-based MIDI components. System Exclusive messages include a Manufacturer's
Identification (ID) code, and are used to transfer any number of data bytes in a format specified
by the referenced manufacturer.

• System Common Messages

The System Common Messages which are currently defined include MTC Quarter Frame, Song
Select, Song Position Pointer, Tune Request, and End Of Exclusive (EOX). The MTC Quarter
Frame message is part of the MIDI Time Code information used for synchronization of MIDI
equipment and other equipment, such as audio or video tape machines.

The Song Select message is used with MIDI equipment, such as sequencers or drum machines,
which can store and recall a number of different songs. The Song Position Pointer is used to
set a sequencer to start playback of a song at some point other than at the beginning. The
Song Position Pointer value is related to the number of MIDI clocks which would have elapsed
between the beginning of the song and the desired point in the song. This message can only be
used with equipment which recognizes MIDI System Real Time Messages (MIDI Sync).

The Tune Request message is generally used to request an analog synthesizer to retune its'
internal oscillators. This message is generally not needed with digital synthesizers.

The EOX message is used to flag the end of a System Exclusive message, which can include a
variable number of data bytes.

• System Real Time Messages

The MIDI System Real Time messages are used to synchronize all of the MIDI clock-based
equipment within a system, such as sequencers and drum machines. Most of the System Real
Time messages are normally ignored by keyboard instruments and synthesizers. To help
ensure accurate timing, System Real Time messages are given priority over other messages,
and these single-byte messages may occur anywhere in the data stream (a Real Time message
may appear between the status byte and data byte of some other MIDI message).

The System Real Time messages are the Timing Clock, Start, Continue, Stop, Active Sensing,
and the System Reset message. The Timing Clock message is the master clock which sets the
tempo for playback of a sequence. The Timing Clock message is sent 24 times per quarter note.
The Start, Continue, and Stop messages are used to control playback of the sequence.

The Active Sensing signal is used to help eliminate "stuck notes" which may occur if a MIDI
cable is disconnected during playback of a MIDI sequence. Without Active Sensing, if a cable is
disconnected during playback, then some notes may be left playing indefinitely because they
have been activated by a Note On message, but the corresponding Note Off message will never
be received.

The System Reset message, as the name implies, is used to reset and initialize any equipment
which receives the message. This message is generally not sent automatically by transmitting
devices, and must be initiated manually by a user.

• System Exclusive Messages

System Exclusive messages may be used to send data such as patch parameters or sample data
between MIDI devices. Manufacturers of MIDI equipment may define their own formats for
System Exclusive data. Manufacturers are granted unique identification (ID) numbers by the
MMA or the JMSC, and the manufacturer ID number is included as part of the System
Exclusive message. The manufacturers ID is followed by any number of data bytes, and the

8 MIDI and Wavetable Synthesis Tutorial

data transmission is terminated with the EOX message. Manufacturers are required to
publish the details of their System Exclusive data formats, and other manufacturers may freely
utilize these formats, provided that they do not alter or utilize the format in a way which
conflicts with the original manufacturers specifications.

Certain System Exclusive ID numbers are reserved for special protocols. Among these are the
MIDI Sample Dump Standard, which is a System Exclusive data format defined in the MIDI
specification for the transmission of sample data between MIDI devices, as well as MIDI Show
Control and MIDI Machine Control.

Timing Accuracy and Running Status

Since MIDI was designed to convey musical performance data, it must provide sufficiently
accurate timing to preserve the rhythmic integrity of the music. The ear is quite sensitive to
small variations in timing, which can easily degrade the expressive quality of a musical phrase.
This is particularly true for grace notes, strummed chords, flams and clusters of notes, and for
rhythmically complex and syncopated ensemble music.

Jitter (the variation in the relative timing between two or more events) has the strongest
impact on rhythmic integrity. Various studies have shown that jitter on the close order of one
ms can be audible. Other research has indicated that musicians can control relative time
intervals with a precision of about 1.5 ms in common musical situations, as mentioned in the
preceding paragraph.

Latency (the delay between when an event is triggered and when the resulting sound occurs) is
also important: musical instruments feel more and more sluggish to play as latency increases.
Since sound travels at about 1 ms per foot, latency of 7 ms is roughly equal to the maximum
separation between members of a string quartet. In practice, latency of 10 ms is generally
imperceptible, as long as the variation in latency (i.e. jitter) is kept small.

With a data transmission rate of 31.25 Kbit/s and 10 bits transmitted per byte of MIDI data, a
3-byte Note On or Note Off message takes about 1 ms to be sent. In practice, MIDI can often
provide less than 1 ms jitter, with latency of 3 ms or less * as long as it’s not necessary to
actually play two events absolutely simultaneously. Since MIDI data is transmitted serially, a
pair of musical events which originally occurred at the same time * but must be sent one at a
time in the MIDI data stream * cannot be reproduced at exactly the same time. Luckily, human
performers almost never play two notes at exactly the same time. For both biomechanical and
expressive reasons, notes are generally spaced at least slightly apart. This allows MIDI to
reproduce a solo musical part with quite reasonable rhythmic accuracy.

However, MIDI data being sent from a sequencer can include a number of different parts. On a
given beat, there may be a large number of musical events which should occur virtually
simultaneously. In this situation, many events will have to “wait their turn” to be transmitted
over MIDI. Worse, different events will be delayed by different amounts of time (depending on
how many events are queued up ahead of a given event). This can produce a kind of
progressive rhythmic “smearing” that may be quite noticeable. A technique called “running
status” is provided to help reduce this rhythmic “smearing” effect by reducing the amount of
data actually transmitted in the MIDI data stream.

Running status is based on the fact that it is very common for a string of consecutive messages
to be of the same message type. For instance, when a chord is played on a keyboard, ten
successive Note On messages may be generated, followed by ten Note Off messages. When
running status is used, a status byte is sent for a message only when the message is not of the
same type as the last message sent on the same Channel. The status byte for subsequent
messages of the same type may be omitted (only the data bytes are sent for these subsequent
messages).

MIDI and Wavetable Synthesis Tutorial 9

The effectiveness of running status can be enhanced by sending Note On messages with a
velocity of zero in place of Note Off messages. In this case, long strings of Note On messages
will often occur. Changes in some of the MIDI controllers or movement of the pitch bend wheel
on a musical instrument can produce a staggering number of MIDI Channel voice messages,
and running status can also help a great deal in these instances.

MIDI Sequencers and Standard MIDI Files

MIDI messages are received and processed by a MIDI synthesizer in real time. When the
synthesizer receives a MIDI "note on" message it plays the appropriate sound. When the
corresponding "note off" message is received, the synthesizer turns the note off. If the source of
the MIDI data is a musical instrument keyboard, then this data is being generated in real
time. When a key is pressed on the keyboard, a "note on" message is generated in real time. In
these real time applications, there is no need for timing information to be sent along with the
MIDI messages.

However, if the MIDI data is to be stored as a data file, and/or edited using a sequencer, then
some form of "time-stamping" for the MIDI messages is required. The Standard MIDI Files
specification provides a standardized method for handling time-stamped MIDI data. This
standardized file format for time-stamped MIDI data allows different applications, such as
sequencers, scoring packages, and multimedia presentation software, to share MIDI data files.

The specification for Standard MIDI Files defines three formats for MIDI files. MIDI
sequencers can generally manage multiple MIDI data streams, or "tracks". Standard MIDI
files using Format 0 store all of the MIDI sequence data in a single track. Format 1 files store
MIDI data as a collection of tracks. Format 2 files can store several independent patterns.
Format 2 is generally not used by MIDI sequencers for musical applications. Most
sophisticated MIDI sequencers can read either Format 0 or Format 1 Standard MIDI Files.
Format 0 files may be smaller, and thus conserve storage space. They may also be transferred
using slightly less system bandwidth than Format 1 files. However, Format 1 files may be
viewed and edited more directly, and are therefore generally preferred.

Synthesizer Basics

Polyphony

The polyphony of a sound generator refers to its ability to play more than one note at a time.
Polyphony is generally measured or specified as a number of notes or voices. Most of the early
music synthesizers were monophonic, meaning that they could only play one note at a time. If
you pressed five keys simultaneously on the keyboard of a monophonic synthesizer, you would
only hear one note. Pressing five keys on the keyboard of a synthesizer which was polyphonic
with four voices of polyphony would, in general, produce four notes. If the keyboard had more
voices (many modern sound modules have 16, 24, or 32 note polyphony), then you would hear
all five of the notes.

Sounds

The different sounds that a synthesizer or sound generator can produce are sometimes called
"patches", "programs", "algorithms", or "timbres". Programmable synthesizers commonly
assign "program numbers" (or patch numbers) to each sound. For instance, a sound module
might use patch number 1 for its acoustic piano sound, and patch number 36 for its fretless
bass sound. The association of all patch numbers to all sounds is often referred to as a patch
map.

10 MIDI and Wavetable Synthesis Tutorial

Via MIDI, a Program Change message is used to tell a device receiving on a given Channel to
change the instrument sound being used. For example, a sequencer could set up devices on
Channel 4 to play fretless bass sounds by sending a Program Change message for Channel four
with a data byte value of 36 (this is the General MIDI program number for the fretless bass
patch).

Multitimbral Mode

A synthesizer or sound generator is said to be multitimbral if it is capable of producing two or
more different instrument sounds simultaneously. If a synthesizer can play five notes
simultaneously, and it can produce a piano sound and an acoustic bass sound at the same time,
then it is multitimbral. With enough notes of polyphony and "parts" (multitimbral) a single
synthesizer could produce the entire sound of a band or orchestra.

Multitimbral operation will generally require the use of a sequencer to send the various MIDI
messages required. For example, a sequencer could send MIDI messages for a piano part on
Channel 1, bass on Channel 2, saxophone on Channel 3, drums on Channel 10, etc. A 16 part
multitimbral synthesizer could receive a different part on each of MIDI's 16 logical channels.

The polyphony of a multitimbral synthesizer is usually allocated dynamically among the
different parts (timbres) being used. At any given instant five voices might be needed for the
piano part, two voices for the bass, one for the saxophone, plus 6 voices for the drums. Note
that some sounds on some synthesizers actually utilize more than one "voice", so the number of
notes which may be produced simultaneously may be less than the stated polyphony of the
synthesizer, depending on which sounds are being utilized.

The General MIDI (GM) System

At the beginning of a MIDI sequence, a Program Change message is usually sent on each
Channel used in the piece in order to set up the appropriate instrument sound for each part.
The Program Change message tells the synthesizer which patch number should be used for a
particular MIDI Channel. If the synthesizer receiving the MIDI sequence uses the same patch
map (the assignment of patch numbers to sounds) that was used in the composition of the
sequence, then the sounds will be assigned as intended.

Prior to General MIDI, there was no standard for the relationship of patch numbers to specific
sounds for synthesizers. Thus, a MIDI sequence might produce different sounds when played
on different synthesizers, even though the synthesizers had comparable types of sounds. For
example, if the composer had selected patch number 5 for Channel 1, intending this to be an
electric piano sound, but the synthesizer playing the MIDI data had a tuba sound mapped at
patch number 5, then the notes intended for the piano would be played on the tuba when using
this synthesizer (even though this synthesizer may have a fine electric piano sound available at
some other patch number).

The General MIDI (GM) Specification defines a set of general capabilities for General MIDI
Instruments. The General MIDI Specification includes the definition of a General MIDI Sound
Set (a patch map), a General MIDI Percussion map (mapping of percussion sounds to note
numbers), and a set of General MIDI Performance capabilities (number of voices, types of MIDI
messages recognized, etc.). A MIDI sequence which has been generated for use on a General
MIDI Instrument should play correctly on any General MIDI synthesizer or sound module. The
General MIDI system utilizes MIDI Channels 1-9 and 11-16 for chromatic instrument sounds,
while Channel number 10 is utilized for "key-based" percussion sounds. These instrument
sounds are grouped into "sets" of related sounds. For example, program numbers 1-8 are piano
sounds, 9-16 are chromatic percussion sounds, 17-24 are organ sounds, 25-32 are guitar
sounds, etc.

MIDI and Wavetable Synthesis Tutorial 11

For the instrument sounds on channels 1-9 and 11-16, the note number in a Note On message
is used to select the pitch of the sound which will be played. For example if the Vibraphone
instrument (program number 12) has been selected on Channel 3, then playing note number 60
on Channel 3 would play the middle C note (this would be the default note to pitch assignment
on most instruments), and note number 59 on Channel 3 would play B below middle C. Both
notes would be played using the Vibraphone sound.

The General MIDI percussion sounds are set on Channel 10. For these "key-based" sounds, the
note number data in a Note On message is used differently. Note numbers on Channel 10 are
used to select which drum sound will be played. For example, a Note On message on Channel
10 with note number 60 will play a Hi Bongo drum sound. Note number 59 on Channel 10 will
play the Ride Cymbal 2 sound.

It should be noted that the General MIDI system specifies sounds using program numbers 1
through 128. The MIDI Program Change message used to select these sounds uses an 8-bit
byte, which corresponds to decimal numbering from 0 through 127, to specify the desired
program number. Thus, to select GM sound number 10, the Glockenspiel, the Program Change
message will have a data byte with the decimal value 9.

The General MIDI system specifies which instrument or sound corresponds with each
program/patch number, but General MIDI does not specify how these sounds are produced.
Thus, program number 1 should select the Acoustic Grand Piano sound on any General MIDI
instrument. However, the Acoustic Grand Piano sound on two General MIDI synthesizers
which use different synthesis techniques may sound quite different.

Synthesis Technology: FM and Wavetable

There are a number of different technologies or algorithms used to create sounds in music
synthesizers. Two widely used techniques are Frequency Modulation (FM) synthesis and
Wavetable synthesis.

FM synthesis techniques generally use one periodic signal (the modulator) to modulate the
frequency of another signal (the carrier). If the modulating signal is in the audible range, then
the result will be a significant change in the timbre of the carrier signal. Each FM voice
requires a minimum of two signal generators. These generators are commonly referred to as
"operators", and different FM synthesis implementations have varying degrees of control over
the operator parameters. Sophisticated FM systems may use 4 or 6 operators per voice, and the
operators may have adjustable envelopes which allow adjustment of the attack and decay rates
of the signal. Although FM systems were implemented in the analog domain on early
synthesizer keyboards, modern FM synthesis implementations are done digitally. FM synthesis
techniques are very useful for creating expressive new synthesized sounds. However, if the
goal of the synthesis system is to recreate the sound of some existing instrument, this can
generally be done more accurately with digital sample-based techniques.

Digital sampling systems store high quality sound samples digitally, and then replay these
sounds on demand. Digital sample-based synthesis systems may employ a variety of special
techniques, such as sample looping, pitch shifting, mathematical interpolation, and digital
filtering, in order to reduce the amount of memory required to store the sound samples (or to
get more types of sounds from a given amount of memory). These sample-based synthesis
systems are often called "wavetable" synthesizers (the sample memory in these systems
contains a large number of sampled sound segments, and can be thought of as a "table" of
sound waveforms which may be looked up and utilized when needed).

12 MIDI and Wavetable Synthesis Tutorial

Wavetable Synthesis Techniques

The majority of professional synthesizers available today use some form of sampled-sound or
Wavetable synthesis. The trend for multimedia sound products is also towards wavetable
synthesis. To help prospective MIDI developers, a number of the techniques employed in this
type of synthesis are discussed in the following paragraphs.

• Looping and Envelope Generation

One of the primary techniques used in wavetable synthesizers to conserve sample memory
space is the looping of sampled sound segments. For many instrument sounds, the sound can
be modeled as consisting of two major sections: the attack section and the sustain section. The
attack section is the initial part of the sound, where the amplitude and the spectral
characteristics of the sound may be changing very rapidly. The sustain section of the sound is
that part of the sound following the attack, where the characteristics of the sound are changing
less dynamically.

Figure 4 shows a waveform with portions which could be considered the attack and the sustain
sections indicated. In this example, the spectral characteristics of the waveform remain
constant throughout the sustain section, while the amplitude is decreasing at a fairly constant
rate. This is an exaggerated example, in most natural instrument sounds, both the spectral
characteristics and the amplitude continue to change through the duration of the sound. The
sustain section, if one can be identified, is that section for which the characteristics of the
sound are relatively constant.

Attack Section Sustain Section

Figure 4. Attack and Sustain Portions of a Waveform

A great deal of memory can be saved in wavetable synthesis systems by storing only a short
segment of the sustain section of the waveform, and then looping this segment during
playback. Figure 5 shows a two period segment of the sustain section from the waveform in
Figure 4, which has been looped to create a steady state signal. If the original sound had a
fairly constant spectral content and amplitude during the sustained section, then the sound
resulting from this looping operation should be a good approximation of the sustained section
of the original.

MIDI and Wavetable Synthesis Tutorial 13

2 period segment
of sustain sound

Waveform resulting from
looping segment above

Figure 5. Looping of a Sample Segment

For many acoustic string instruments, the spectral characteristics of the sound remain fairly
constant during the sustain section, while the amplitude of the signal decays. This can be
simulated with a looped segment by multiplying the looped samples by a decreasing gain factor
during playback to get the desired shape or envelope. The amplitude envelope of a sound is
commonly modeled as consisting of some number of linear segments. An example is the
commonly used four part piecewise-linear Attack-Decay-Sustain-Release (ADSR) envelope
model. Figure 6 depicts a typical ADSR envelope shape, and Figure 7 shows the result of
applying this envelope to the looped waveform from Figure 5.

Attack Decay Sustain Release

Amplitude

Time

Figure 6. A Typical ADSR Amplitude Envelope

14 MIDI and Wavetable Synthesis Tutorial

Attack Decay Sustain Release

Figure 7. ADSR Envelope Applied to a Looped Sample Segment

A typical wavetable synthesis system would store sample data for the attack section and the
looped section of an instrument sound. These sample segments might be referred to as the
initial sound and the loop sound. The initial sound is played once through, and then the loop
sound is played repetitively until the note ends. An envelope generator function is used to
create an envelope which is appropriate for the particular instrument, and this envelope is
applied to the output samples during playback.

Playback of the initial wave (with the attack portion of the envelope applied) begins when a
Note On message is received. The length of the initial sound segment is fixed by the number of
samples in the segment, and the length of the attack and decay sections of the envelope are
generally also fixed for a given instrument sound.

The sustain section will continue to repeat the loop samples while applying the sustain
envelope slope (which decays slowly in our examples), until a Note Off message is applied. The
Note Off message triggers the beginning of the release portion of the envelope.

• Loop Length

The loop length is measured as a number of samples, and the length of the loop should be equal
to an integral number of periods of the fundamental pitch of the sound being played (if this is
not true, then an undesirable "pitch shift" will occur during playback when the looping begins).
In practice, the length of the loop segment for an acoustic instrument sample may be many
periods with respect to the fundamental pitch of the sound. If the sound has a natural vibrato
or chorus effect, then it is generally desirable to have the loop segment length be an integral
multiple of the period of the vibrato or chorus.

• One-Shot Sounds

The previous paragraphs discussed dividing a sampled sound into an attack section and a
sustain section, and then using looping techniques to minimize the storage requirements for
the sustain portion. However, some sounds, particularly sounds of short duration or sounds
whose characteristics change dynamically throughout their duration, are not suitable for
looped playback techniques. Short drum sounds often fit this description. These sounds are

MIDI and Wavetable Synthesis Tutorial 15

stored as a single sample segment which is played once through with no looping. This class of
sounds are referred to as "one-shot" sounds.

• Sample Editing and Processing

There are a number of sample editing and processing steps involved in preparing sampled
sounds for use in a wavetable synthesis system. The requirements for editing the original
sample data to identify and extract the initial and loop segments have already been mentioned.

Editing may also be required to make the endpoints of the loop segment compatible. If the
amplitude and the slope of the waveform at the beginning of the loop segment do not match
those at the end of the loop, then a repetitive "glitch" will be heard during playback of the
looped section. Additional processing may be performed to "compress" the dynamic range of
the sound to improve the signal/quantizing noise ratio or to conserve sample memory. This
topic is addressed next.

When all of the sample processing has been completed, the resulting sampled sound segments
for the various instruments are tabulated to form the sample memory for the synthesizer.

• Sample Data Compression

The signal-to-quantizing noise ratio for a digitally sampled signal is limited by sample word
size (the number of bits per sample), and by the amplitude of the digitized signal. Most
acoustic instrument sounds reach their peak amplitude very quickly, and the amplitude then
slowly decays from this peak. The ear's sensitivity dynamically adjusts to signal level. Even in
systems utilizing a relatively small sample word size, the quantizing noise level is generally
not perceptible when the signal is near maximum amplitude. However, as the signal level
decays, the ear becomes more sensitive, and the noise level will appear to increase. Of course,
using a larger word size will reduce the quantizing noise, but there is a considerable price
penalty paid if the number of samples is large.

Compression techniques may be used to improve the signal-to-quantizing noise ratio for some
sampled sounds. These techniques reduce the dynamic range of the sound samples stored in
the sample memory. The sample data is decompressed during playback to restore the dynamic
range of the signal. This allows the use of sample memory with a smaller word size (smaller
dynamic range) than is utilized in the rest of the system. There are a number of different
compression techniques which may be used to compress the dynamic range of a signal.

Note that there is some compression effect inherent in the looping techniques described earlier.
If the loop segment is stored at an amplitude level which makes full use of the dynamic range
available in the sample memory, and the processor and D/A converters used for playback have
a wider dynamic range than the sample memory, then the application of a decay envelope
during playback will have a decompression effect similar to that described in the previous
paragraph.

• Pitch Shifting

In order to minimize sample memory requirements, wavetable synthesis systems utilize pitch
shifting, or pitch transposition techniques, to generate a number of different notes from a
single sound sample of a given instrument. For example, if the sample memory contains a
sample of a middle C note on the acoustic piano, then this same sample data could be used to
generate the C# note or D note above middle C using pitch shifting.

Pitch shifting is accomplished by accessing the stored sample data at different rates during
playback. For example, if a pointer is used to address the sample memory for a sound, and the

16 MIDI and Wavetable Synthesis Tutorial

pointer is incremented by one after each access, then the samples for this sound would be
accessed sequentially, resulting in some particular pitch. If the pointer increment was two
rather than one, then only every second sample would be played, and the resulting pitch would
be shifted up by one octave (the frequency would be doubled).

In the previous example, the sample memory address pointer was incremented by an integer
number of samples. This allows only a limited set of pitch shifts. In a more general case, the
memory pointer would consist of an integer part and a fractional part, and the increment value
could be a fractional number of samples. The memory pointer is often referred to as a “phase
accumulator” and the increment value is then the “phase increment”. The integer part of the
phase accumulator is used to address the sample memory, the fractional part is used to
maintain frequency accuracy.

For example if the phase increment value was equivalent to 1/2, then the pitch would be
shifted down by one octave (the frequency would be halved). A phase increment value of
1.05946 (the twelfth root of two) would create a pitch shift of one musical half-step (i.e. from C
to C#) compared with an increment of 1. When non-integer increment values are utilized, the
frequency resolution for playback is determined by the number of bits used to represent the
fractional part of the address pointer and the address increment parameter.

• Interpolation

When the fractional part of the address pointer is non-zero, then the "desired value" falls
between available data samples. Figure 8 depicts a simplified addressing scheme wherein the
Address Pointer and the increment parameter each have a 4-bit integer part and a 4-bit
fractional part. In this case, the increment value is equal to 1 1/2 samples. Very simple
systems might simply ignore the fractional part of the address when determining the sample
value to be sent to the D/A converter. The data values sent to the D/A converter when using
this approach are indicated in the Figure 8, case I (next page).

A slightly better approach would be to use the nearest available sample value. More
sophisticated systems would perform some type of mathematical interpolation between
available data points in order to get a value to be used for playback. Values which might be
sent to the D/A when interpolation is employed are shown as case II. Note that the overall
frequency accuracy would be the same for both cases indicated, but the output is severely
distorted in the case where interpolation is not used.

There are a number of different algorithms used for interpolation between sample values. The
simplest is linear interpolation. With linear interpolation, interpolated value is simply the
weighted average of the two nearest samples, with the fractional address used as a weighting
constant. For example, if the address pointer indicated an address of (n+K), where n is the
integer part of the address and K is the fractional part, than the interpolated value can be
calculated as s(n+K) = (1-K)s(n) + (K)s(n+1), where s(n) is the sample data value at address n.
More sophisticated interpolation techniques can be utilized to further reduce distortion, but
these techniques are computationally expensive.

MIDI and Wavetable Synthesis Tutorial 17

0 0 0 1 1 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0
1 0 1 1 0 0 0 0
1 1 0 0 1 0 0 0

Integer Part Fractional Part{Address Increment Parameter

Address Pointer Initial Value

Integer Part Fractional Part{

Address Pointer Value
During Playback

1000 1001 1010 1011 1100 1101

Data values sent to D/A with fractional address ignored

1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0
1 0 1 1 0 0 0 0
1 1 0 0 1 0 0 0

Integer Part Fractional Part{
Address Pointer Values
During Playback

1000 1001 1010 1011 1100 1101

Time

Sample Value
Stored in Memory

Memory Address

Data values sent to D/A when using interpolation

Interpolated Value

Time

Case I

Case II

{
Memory Address

Sample Value
Stored in Memory

{
{

Figure 8. Sample Memory Addressing and Interpolation

• Oversampling

Oversampling of the sound samples may also be used to improve distortion in wavetable
synthesis systems. For example, if 4X oversampling were utilized for a particular instrument
sound sample, then an address increment value of 4 would be used for playback with no pitch
shift. The data points chosen during playback will be closer to the "desired values", on the
average, than they would be if no oversampling were utilized because of the increased number
of data points used to represent the waveform. Of course, oversampling has a high cost in
terms of sample memory requirements.

In many cases, the best approach may be to utilize linear interpolation combined with varying
degrees of oversampling where needed. The linear interpolation technique provides reasonable
accuracy for many sounds, without the high penalty in terms of processing power required for
more sophisticated interpolation methods. For those sounds which need better accuracy,
oversampling is employed. With this approach, the additional memory required for
oversampling is only utilized where it is most needed. The combined effect of linear
interpolation and selective oversampling can produce excellent results.

18 MIDI and Wavetable Synthesis Tutorial

• Splits

When the pitch of a sampled sound is changed during playback, the timbre of the sound is
changed somewhat also. The effect is less noticeable for small changes in pitch (up to a few
semitones), than it is for a large pitch shift. To retain a natural sound, a particular sample of
an instrument sound will only be useful for recreating a limited range of notes. To get coverage
of the entire instrument range, a number of different samples, each with a limited range of
notes, are used. The resulting instrument implementation is often referred to as a
“multisampled” instrument. This technique can be thought of as splitting a musical instrument
keyboard into a number of ranges of notes, with a different sound sample used for each range.
Each of these ranges is referred to as a split, or key split.

Velocity splits refer to the use of different samples for different note velocities. Using velocity
splits, one sample might be utilized if a particular note is played softly, where a different
sample would be utilized for the same note of the same instrument when played with a higher
velocity. This technique is not commonly used to produce basic sound samples because of the
added memory expense, but both key splitting and velocity splitting techniques can be utilized
as a performance enhancement. For instance, a key split might allow a fretless bass sound on
the lower octaves of a keyboard, while the upper octaves play a vibraphone. Similarly, a
velocity split might "layer" strings on top of an acoustic piano sound when the keys are hit with
higher velocity.
• Aliasing Noise

Earlier paragraphs discussed the timbre changes which result from pitch shifting. The
resampling techniques used to shift the pitch of a stored sound sample can also result in the
introduction of aliasing noise into an instrument sound. The generation of aliasing noise can
also limit the amount of pitch shifting which may be effectively applied to a sound sample.
Sounds which are rich in upper harmonic content will generally have more of a problem with
aliasing noise. Low-pass filtering applied after interpolation can help eliminate the
undesirable effect of aliasing noise. The use of oversampling also helps eliminate aliasing
noise.

• LFOs for Vibrato and Tremolo

Vibrato and tremolo are effects which are often produced by musicians playing acoustic
instruments. Vibrato is basically a low-frequency modulation of the pitch of a note, while
tremolo is modulation of the amplitude of the sound. These effects are simulated in
synthesizers by implementing low-frequency oscillators (LFOs) which are used to modulate the
pitch or amplitude of the synthesized sound being produced.

Natural vibrato and tremolo effects tend to increase in strength as a note is sustained. This is
accomplished in synthesizers by applying an envelope generator to the LFO. For example, a
flute sound might have a tremolo effect which begins at some point after the note has sounded,
and the tremolo effect gradually increases to some maximum level, where it remains until the
note stops sounding.

• Layering

Layering refers to a technique in which multiple sounds are utilized for each note played. This
technique can be used to generate very rich sounds, and may also be useful for increasing the
number of instrument patches which can be created from a limited sample set. Note that
layered sounds generally utilize more than one voice of polyphony for each note played, and
thus the number of voices available is effectively reduced when these sounds are being used.

MIDI and Wavetable Synthesis Tutorial 19

• Digital Filtering

It was mentioned earlier that low-pass filtering may be used to help eliminate noise which may
be generated during the pitch shifting process. There are also a number of ways in which
digital filtering is used in the timbre generation process to improve the resulting instrument
sound. In these applications, the digital filter implementation is polyphonic, meaning that a
separate filter is implemented for each voice being generated, and the filter implementation
should have dynamically adjustable cutoff frequency and/or Q.

For many acoustic instruments, the character of the tone which is produced changes
dramatically as a function of the amplitude level at which the instrument is played. For
example, the tone of an acoustic piano may be very bright when the instrument is played
forcefully, but much more mellow when it is played softly. Velocity splits, which utilize
different sample segments for different note velocities, can be implemented to simulate this
phenomena.

Another very powerful technique is to implement a digital low-pass filter for each note with a
cutoff frequency which varies as a function of the note velocity. This polyphonic digital filter
dynamically adjusts the output frequency spectrum of the synthesized sound as a function of
note velocity, allowing a very effective recreation of the acoustic instrument timbre.

Another important application of digital filtering is in smoothing out the transitions between
samples in key-based splits. At the border between two splits, there will be two adjacent notes
which are based on different samples. Normally, one of these samples will have been pitch
shifted up to create the required note, while the other will have been shifted down in pitch. As
a result, the timbre of these two adjacent notes may be significantly different, making the split
obvious. This problem may be alleviated by employing a digital filter which uses the note
number to control the filter characteristics. A table may be constructed containing the filter
characteristics for each note number of a given instrument. The filter characteristics are
chosen to compensate for the pitch shifting associated with the key splits used for that
instrument.

It is also common to control the characteristics of the digital filter using an envelope generator
or an LFO. The result is an instrument timbre which has a spectrum which changes as a
function of time. An envelope generator might be used to control the filter cutoff frequency
generate a timbre which is very bright at the onset, but which gradually becomes more mellow
as the note decays. Sweeping the cutoff frequency of a filter with a high Q setting using an
envelope generator or LFO can help when trying to simulate the sounds of analog synthesizers.

The PC to MIDI Connection

To use MIDI with a personal computer, a PC to MIDI interface product is required unless the
computer comes equipped with a built-in MIDI interface). The most common types of MIDI
interfaces for IBM compatibles are built into the PC sound cards, sharing the function of the
joystick port. However, many of these interfaces do not meet the MIDI specification for
hardware ground isolation and may not be suitable for serious use. An alternative are add-in
cards which plug into an expansion slot on the PC bus, but there are also serial port MIDI
interfaces (connects to a serial port on the PC) and parallel port MIDI interfaces (connects to
the PC printer port) and USB MIDI interfaces.

The fundamental function of a MIDI interface for the PC is to convert parallel data bytes from
the PC data bus into the serial MIDI data format and vice versa (a UART function). However,
"smart" MIDI interfaces may provide a number of more sophisticated functions, such as
generation of MIDI timing data, MIDI data buffering, MIDI message filtering, synchronization
to external tape machines, as well as multiple MIDI ports and more.

20 MIDI and Wavetable Synthesis Tutorial

The specifics of the interface can be important to insure transparent operation of games and
other applications which use General MIDI. GM does not define how the game is supposed to
connect with the synthesizer, so sound-card and interface standards are also needed to assure
proper operation. For the most part, modern-day operating systems provide a translation layer
which assures compatibility among popular devices and software, but this is not true for older
versions of Windows and for most MS-DOS software.

The defacto standard for MIDI interface add-in cards for the IBM-PC is the Roland MPU-401
interface. The MPU-401 is a smart MIDI interface, which also supports a dumb mode of
operation (often referred to as "UART mode"). There are a number of MPU-401 compatible
MIDI interfaces on the market, some which only support the UART (dumb) mode of operation.
In addition, many IBM-PC add-in sound cards include built-in MIDI interfaces which
implement the UART mode functions of the MPU-401.

PC Compatibility Issues

There are two levels of compatibility which must be considered for MIDI applications running
on the PC. First is the compatibility of the application with the MIDI interface being used. The
second is the compatibility of the application with the MIDI synthesizer. For the purposes of
this tutorial we will be talking only about IBM-PC and compatible systems, though much of
this information may also be applicable to other PC systems.
• MS-DOS Applications

If you have any older MS-DOS games you like to play, there is a good chance they have a MIDI
sound track. If so, they probably support the MPU-401 interface, and most only require the
UART mode – these applications should work correctly on any compatible PC equipped with a
MPU-401 interface or a sound card with a MPU-401 UART-mode capability. Other MIDI
interfaces, such as serial port or parallel port MIDI adapters, will only work if the application
provides support for that particular model of MIDI interface.

Some MS-DOS applications provide support for a variety of different synthesizer modules, but
most support only an FM synthesizer (AdLib/Sound Blaster), the MT-32 family from Roland, or
General MIDI. Prior to the General MIDI standard, there was no widely accepted standard
patch set for synthesizers, so applications generally needed to provide support for each of the
most popular synthesizers at the time. If the application did not support the particular model
of synthesizer or sound module that was attached to the PC, then the sounds produced by the
application might not be the sounds which were intended. Modern applications can provide
support for a General MIDI (GM) synthesizer, and any GM-compatible sound source should
produce the correct sounds.

• Multimedia PC (MPC) Systems

In the early 90’s the number of applications for high quality audio functions on the PC
(including music synthesis) grew explosively after the introduction of Microsoft Windows 3.0
with Multimedia Extensions ("Windows with Multimedia") in 1991, characterized by the
Multimedia PC (MPC) Specification. The audio capabilities of an MPC system include digital
audio recording and playback (linear PCM sampling), music synthesis, and audio mixing.

The first MPC specification attempted to balance performance and cost issues by defining two
types of synthesizers; a "Base Multitimbral Synthesizer", and an "Extended Multitimbral
Synthesizer". Both the Base and the Extended synthesizer are expected to use a General MIDI
patch set, but neither actually meets the full requirements of General MIDI polyphony or
simultaneous timbres. Base Multitimbral Synthesizers must be capable of playing 6 "melodic
notes" and "2 percussive" notes simultaneously, using 3 "melodic timbres" and 2 "percussive
timbres".

MIDI and Wavetable Synthesis Tutorial 21

The formal requirements for an Extended Multitimbral Synthesizer are only that it must have
capabilities which exceed those specified for a Base Multitimbral Synthesizer. However, the
"goals" for an Extended synthesizer include the ability to play 16 melodic notes and 8
percussive notes simultaneously, using 9 melodic timbres and 8 percussive timbres.

The MPC specification also included an authoring standard for MIDI composition. This
standard required that each MIDI file contain two arrangements of the same song, one for
Base synthesizers and one for Extended synthesizers, allowing for differences in available
polyphony and timbres. The MIDI data for the Base synthesizer arrangement is sent on MIDI
channels 13 - 16 (with the percussion track on Channel 16), and the Extended synthesizer
arrangement utilizes channels 1 - 10 (percussion is on Channel 10). This technique was
intended to optimize the MIDI file to play on both types of synthesizer, but required users of
General MIDI synthesizers to disable certain Channels to avoid playing both performances,
(including playing the Channel 16 percussion track, but with a melodic instrument). Microsoft
eventually moved to full General MIDI support in Windows 95 and removed the Base/Extended
requirement.

• Microsoft Windows 3.x/9x Configuration

Windowsapplications address hardware devices such as MIDI interfaces or synthesizers
through the use of drivers. The drivers provide applications software with a common interface
through which hardware may be accessed, and this simplifies the hardware compatibility
issue. When a MIDI interface or synthesizer is installed in the PC and a suitable device driver
has been loaded in Windows 3.x or 9x, the Windows MIDI Mapper applet will then appear
within the Control Panel (Multimedia Control). MIDI messages are sent from an application to
the MIDI Mapper, which then routes the messages to the appropriate device driver. The MIDI
Mapper may be set to perform some filtering or translations of the MIDI messages in route
from the application to the driver. The processing to be performed by the MIDI Mapper is
defined in the MIDI Mapper Setups, Patch Maps, and Key Maps.

MIDI Mapper Setups are used to assign MIDI channels to device drivers. For instance, If you
have an MPU-401 interface with a General MIDI synthesizer and you also have a Creative
Labs Sound Blaster card in your system, you might wish to assign channels 13 to 16 to the Ad
Lib driver (which will drive the Base-level FM synthesizer on the Sound Blaster), and assign
channels 1 - 10 to the MPU-401 driver. In this case, MPC compatible MIDI files will play on
both the General MIDI synthesizer and the FM synthesizer at the same time. The General
MIDI synthesizer will play the Extended arrangement on MIDI channels 1 - 10, and the FM
synthesizer will play the Base arrangement on channels 13-16.

The MIDI Mapper Setups can also be used to change the Channel number of MIDI messages.
If you have MIDI files which were composed for a General MIDI instrument, and you are
playing them on a Base Multitimbral Synthesizer, you would probably want to take the MIDI
percussion data coming from your application on Channel 10 and send this information to the
device driver on Channel 16.

The MIDI Mapper patch maps are used to translate patch numbers when playing MPC or
General MIDI files on synthesizers which do not use the General MIDI patch numbers. Patch
maps can also be used to play MIDI files which were arranged for non-GM synthesizers on GM
synthesizers. For example, the Windows-supplied MT-32 patch map can be used when playing
GM-compatible .MID files on the Roland MT-32 sound module or LAPC-1 sound card. The
MIDI Mapper key maps perform a similar function, translating the key numbers contained in
MIDI Note On and Note Off messages. This capability is useful for translating GM-compatible
percussion parts for playback on non-GM synthesizers or vice-versa. The Windows-supplied
MT-32 key map changes the key-to-drum sound assignments used for General MIDI to those
used by the MT-32 and LAPC-1.

22 MIDI and Wavetable Synthesis Tutorial

Summary

The MIDI protocol provides an efficient format for conveying musical performance data, and
the Standard MIDI Files specification ensures that different applications can share time-
stamped MIDI data. While this alone is largely sufficient for the working MIDI musician, the
storage efficiency and on-the-fly editing capability of MIDI data also makes MIDI an attractive
vehicle for generation of sounds in multimedia applications, computer games, or high-end
karaoke equipment.

The General MIDI system provides a common set of capabilities and a common patch map for
high polyphony, multitimbral synthesizers, providing musical sequence authors and
multimedia applications developers with a common target platform for synthesis. With the
greater realism which comes from wavetable synthesis, and as newer, interactive, applications
come along, MIDI-driven synthesizers will continue to be an important component for sound
generation devices and multimedia applications.

MIDI 1.0 Detailed Specification
Document Version 4.2

Revised February 1996

Published by:
The MIDI Manufacturers Association

Los Angeles, CA

This document is a combination of the
MIDI 1.0 Detailed Specification v 4.1.1 and the
MIDI 1.0 Addendum v 4.2.
The MIDI Time Code Specification is not included.

Revised February 1996

Copyright © 1994, 1995, 1996 MIDI Manufacturers Association Incorporated
Portions Copyright © 1985, 1989, MIDI Manufacturers Association Incorporated, Japan MIDI Standards
Committee

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED IN ANY FORM OR BY ANY MEANS,
ELECTRONIC OR MECHANICAL, INCLUDING INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT
PERMISSION IN WRITING FROM THE MIDI MANUFACTURERS ASSOCIATION.

MMA
POB 3173
La Habra CA 90632-3173

MIDI 1.0 Detailed Specification
Document Version 4.2

TABLE OF CONTENTS

OVERVIEW
INTRODUCTION 1
HARDWARE 1
DATA FORMAT 3
MESSAGE TYPES 4
 CHANNEL MESSAGES 4
 SYSTEM MESSAGES 4

DATA TYPES 5
 STATUS BYTES 5
 RUNNING STATUS 5
 UNIMPLEMENTED STATUS 6
 UNDEFINED STATUS 6
 DATA BYTES 6

CHANNEL MODES 6
POWER-UP DEFAULT CONDITIONS 8

DETAILS
CHANNEL VOICE MESSAGES 9
 TYPES OF VOICE MESSAGES 9
 NOTE NUMBER 10
 VELOCITY 10
 NOTE OFF 10
 CONTROL CHANGE 11
 CONTROLLER NUMBERS 11
 GLOBAL CONTOLLERS 12
 GENERAL PURPOSE CONTROLLERS 12
 CONTROLLER EFFECT 13
 BANK SELECT 13
 LEGATO FOOTSWITCH 14
 EFFECTS CONTROLLER DEFINITION 14
 SOUND CONTROLLERS 14
 PORTAMENTO CONTROLLER 16
 REGISTERED AND NON-REGISTERED PARAMETER NUMBERS 17
 PROGRAM CHANGE 18
 PITCH BEND CHANGE 19
 AFTERTOUCH 19

CHANNEL MODE MESSAGES 20
 MODE MESSAGES AS ALL NOTES OFF MESSAGES 20
 THE BASIC CHANNEL OF AN INSTRUMENT 20
 RECEIVERS MODE (OMNI ON/OFF & POLY/MONO) 20
 MONO MODE 21
 OMNI-OFF/MONO 22
 OMNI-ON/MONO 22
 MODES NOT IMPLEMENTED IN A RECEIVER 23
 ALL NOTES OFF 24
 ALL SOUNDS OFF 25
 RESET ALL CONTROLLERS 25
 LOCAL CONTROL 26

SYSTEM COMMON MESSAGES 27
 MTC QUARTER FRAME * 27
 SONG POSITION POINTER 27
 SONG SELECT 29
 RECEPTION OF SONG POSITION AND SONG SELECT 29
 TUNE REQUEST 29
 EOX 29

SYSTEM REAL TIME MESSAGES 30
 START OR CONTINUE MESSAGE 30
 STOP MESSAGE 31
 RELATIONSHIP BETWEEN CLOCKS AND COMMANDS 32
 PRIORITY OF COMMANDS 32
 ACTIVE SENSING 32
 SYSTEM RESET 33

SYSTEM EXCLUSIVE MESSAGES 34
 DISTRIBUTION OF ID NUMBERS 34
 UNIVERSAL EXCLUSIVE ID 35
 DEVICE ID 35
 SAMPLE DUMP 35
 GENERIC HANDSHAKING MESSAGES 36
 DEVICE INQUIRY 40
 FILE DUMP 41
 MIDI TUNING 47
 GENERAL MIDI SYSTEM MESSAGES* 52
 MTC FULL MESSAGE, USER BITS, REAL TIME CUEING* 53
 MIDI SHOW CONTROL* 53
 NOTATION INFORMATION 54
 DEVICE CONTROL (MASTER VOLUME AND BALANCE) 57
 MIDI MACHINE CONTROL* 58

* Specification document available separately (see Table VIII).

APPENDIX

ADDITIONAL EXPLANATIONS AND APPLICATION NOTES A-1
 RUNNING STATUS A-4
 ASSIGNMENT OF NOTE ON/OFF COMMANDS A-4
 VOICE ASSIGNMENT IN POLY MODE A-4
 "ALL NOTES OFF" WHEN SWITCHING MODES A-4
 MIDI MERGING AND ALL NOTES OFF A-4
 HOLD PEDAL AND ALL NOTES OFF A-5
 FURTHER DESCRIPTION OF HOLD PEDAL A-5
 PRIORITY OF MIDI RECEIVING A-5
 RELEASE OF OMNI A-5
 BASIC CHANNEL OF A SEQUENCER A-6
 TRANSPOSING A-6
 MIDI IMPLEMENTATION INSTRUCTIONS A-7
 MIDI IMPLEMENTATION CHART (BLANK)

TABLES
TABLE I SUMMARY OF STATUS BYTES T-1
TABLE II CHANNEL VOICE MESSAGES T-2
TABLE III CONTROLLER NUMBERS T-3
TABLE IIIa REGISTERED PARAMETER NUMBERS T-4
TABLE IV CHANNEL MODE MESSAGES T-5
TABLE V SYSTEM COMMON MESSAGES T-6
TABLE VI SYSTEM REAL TIME MESSAGES T-7
TABLE VII SYSTEM EXCLUSIVE MESSAGES T-8
TABLE VIIa UNIVERSAL SYSTEM EXCLUSIVE ID NUMBERS T-9
TABLE VIIb MANUFACTURER'S ID NUMBERS T-11

TABLE VIII ADDITIONAL OFFICIAL SPECIFICATION DOCUMENTS T-13

MIDI 1.0 Detailed Specification 4.2 1

INTRODUCTION

MIDI, the Musical Instrument Digital Interface, was established as a hardware and software
specification which would make it possible to exchange information (musical notes, program changes,
expression control, etc.) between different musical instruments or other devices such as sequencers,
computers, lighting controllers, mixers, etc. This ability to transmit and receive data was originally
conceived for live performances, although subsequent developments have had enormous impact in
recording studios, audio and video production, and composition environments.

This document has been prepared as a joint effort between the MIDI Manufacturers Association (MMA)
and the Japan MIDI Standards Committee (JMSC) to explain the MIDI 1.0 specification. This document
is subject to change by agreement between the JMSC and MMA. Additional MIDI protocol may be
included in supplements to this publication.

HARDWARE

The hardware MIDI interface operates at 31.25 (+/- 1%) Kbaud, asynchronous, with a start bit, 8 data
bits (D0 to D7), and a stop bit. This makes a total of 10 bits for a period of 320 microseconds per serial
byte. The start bit is a logical 0 (current on) and the stop bit is a logical 1 (current off). Bytes are sent
LSB first.

Circuit: (See Schematic - Page 2). 5 mA current loop type. Logical 0 is current ON. One output shall
drive one and only one input. To avoid ground loops, and subsequent data errors, the transmitter
circuitry and receiver circuitry are internally separated by an opto-isolator (a light emitting diode and a
photo sensor which share a single, sealed package). Sharp PC-900 and HP 6N138 opto-isolators have
been found acceptable. Other high-speed opto-isolators may be satisfactory. The receiver must require
less than 5 mA to turn on. Rise and fall times should be less than 2 microseconds.

Connectors: DIN 5 pin (180 degree) female panel mount receptacle. An example is the SWITCHCRAFT
57 GB5F. The connectors shall be labeled "MIDI IN" and "MIDI OUT". Note that pins 1 and 3 are not
used, and should be left unconnected in the receiver and transmitter. Pin 2 of the MIDI In connector
should also be left unconnected.

The grounding shield connector on the MIDI jacks should not be connected to any circuit or chassis
ground.

When MIDI Thru information is obtained from a MIDI In signal, transmission may occasionally be
performed incorrectly due to signal degradation (caused by the response time of the opto-isolator)
between the rising and falling edges of the square wave. These timing errors will tend to add up in the
"wrong direction" as more devices are chained between MIDI Thru and MIDI In jacks. The result is that,
regardless of circuit quality, there is a limit to the number of devices which can be chained (series-
connected) in this fashion.

2 Overview

MIDI Standard Hardware

NOTES:

1. Opto-isolator currently shown is Sharp PC-900
 (HP 6N138 or other opto-isolator can be used with appropriate changes.)

2. Gates "A" are IC or transistor.

3. Resistors are 5%

Cables shall have a maximum length of fifty feet (15 meters), and shall be terminated on each end by a
corresponding 5-pin DIN male plug, such as the SWITCHCRAFT 05GM5M. The cable shall be shielded
twisted pair, with the shield connected to pin 2 at both ends.

A MIDI Thru output may be provided if needed, which provides a direct copy of data coming in MIDI In.
For long chain lengths (more than three instruments), higher-speed opto-isolators should help to avoid
additive rise/fall time errors which affect pulse width duty cycle.

MIDI 1.0 Detailed Specification 4.2 3

DATA FORMAT

MIDI communication is achieved through multi-byte "messages" consisting of one Status byte followed
by one or two Data bytes. Real-Time and Exclusive messages are exception.

A MIDI-equipped instrument typically contains a receiver and a transmitter. Some instruments may
contain only a receiver or only a transmitter. A receiver accepts messages in MIDI format and executes
MIDI commands. It consists of an opto-isolator, Universal Asynchronous Receiver/Transmitter (UART),
and any other hardware needed to perform the intended functions. A transmitter originates messages in
MIDI format, and transmits them by way of a UART and line driver.

MIDI makes it possible for a user of MIDI-compatible equipment to expand the number of instruments
in a music system and to change system configurations to meet changing requirements.

MIDI messages are sent over any of 16 channels which are used for a variety of performance
information. There are five major types of MIDI messages: Channel Voice, Channel Mode, System
Common, System Real-Time and System Exclusive.

A MIDI event is transmitted as a "message" and consists of one or more bytes. The diagrams below show
the structure and classification of MIDI data.

TYPES OF MIDI BYTES:

Byte

Data Byte
(00H - 7FH)

Status Byte
(80H - FFH)

TYPES OF MIDI MESSAGES:

System
Common
Message

Channel
Message

System
Message

System
Exclusive
Message

System
Real Time
Message

Channel Mode
Message

Channel Voice
Message

Message Type

4 Overview

STRUCTURE OF A SINGLE MESSAGE:

Status

Status

Status Data Byte

Data Byte Data Byte

STRUCTURE OF SYSTEM EXCLUSIVE MESSAGES:

Status Data Bytes EOX

MESSAGE TYPES

Messages are divided into two main categories: Channel and System.

CHANNEL MESSAGES

A Channel message uses four bits in the Status byte to address the message to one of sixteen MIDI
channels and four bits to define the message (see Table II). Channel messages are thereby intended for
the receivers in a system whose channel number matches the channel number encoded into the Status
byte.

An instrument can receive MIDI messages on more than one channel. The channel in which it receives
its main instructions, such as which program number to be on and what mode to be in, is referred to as
its "Basic Channel". An instrument may be set up to receive performance data on multiple channels
(including the Basic Channel). These are referred to as "Voice Channels". These multiple-channel
situations will be discussed in more detail later.

There are two types of Channel messages: Voice and Mode.

VOICE: To control an instrument's voices, Voice messages are sent over the Voice Channels.

MODE: To define the instrument's response to Voice messages, Mode messages are sent over

an instrument's Basic Channel.

SYSTEM MESSAGES

System messages are not encoded with channel numbers. There are three types of System messages:
Common, Real-Time, and Exclusive.

MIDI 1.0 Detailed Specification 4.2 5

COMMON: Common messages are intended for all receivers in a system regardless of

channel.

REAL-TIME: Real-Time messages are used for synchronization and are intended for all clock-

based units in a system. They contain Status bytes only — no Data bytes. Real-
Time messages may be sent at any time — even between bytes of a message
which has a different status. In such cases the Real-Time message is either acted
upon or ignored, after which the receiving process resumes under the previous
status.

EXCLUSIVE: Exclusive messages can contain any number of Data bytes, and can be

terminated either by an End of Exclusive (EOX) or any other Status byte (except
Real Time messages). An EOX should always be sent at the end of a System
Exclusive message. These messages include a Manufacturer's Identification (ID)
code. If a receiver does not recognize the ID code, it should ignore the following
data.

 So that other users and third party developers can fully access their instruments,

manufacturers must publish the format of the System Exclusive data following
their ID code. Only the manufacturer can define or update the format following
their ID.

DATA TYPES

There are two types of bytes sent over MIDI: Status Bytes and Data bytes.

STATUS BYTES

Status bytes are eight-bit binary numbers in which the Most Significant Bit (MSB) is set (binary 1).
Status bytes serve to identify the message type, that is, the purpose of the Data bytes which follow it.
Except for Real-Time messages, new Status bytes will always command a receiver to adopt a new status,
even if the last message was not completed.

RUNNING STATUS

For Voice and Mode messages only. When a Status byte is received and processed, the receiver will
remain in that status until a different Status byte is received. Therefore, if the same Status byte would
be repeated, it can optionally be omitted so that only the Data bytes need to be sent. Thus, with Running
Status, a complete message can consist of only Data bytes.

Running Status is especially helpful when sending long strings of Note On/Off messages, where "Note
On with Velocity of 0" is used for Note Off.

Running Status will be stopped when any other Status byte intervenes. Real-Time messages should not
affect Running Status.

See also: Additional Explanations and Application Notes

6 Overview

UNIMPLEMENTED STATUS

Any status bytes, and subsequent data bytes, received for functions not implemented in a receiver
should be ignored.

UNDEFINED STATUS

All MIDI devices should be careful to never send any undefined status bytes. If a device receives any
such code, it should be ignored without causing any problems to the system. Care should also be taken
during power-up and power-down that no messages be sent out the MIDI Out port. Such noise, if it
appears on a MIDI line, could cause a data or framing error if the number of bits in the byte are
incorrect.

DATA BYTES

Following a Status byte (except for Real-Time messages) there are either one or two Data bytes which
carry the content of the message. Data bytes are eight-bit binary numbers in which the Most Significant
Bit (MSB) is always set to binary 0. The number and range of Data bytes which must follow each Status
byte are specified in the tables in section 2. For each Status byte the correct number of Data bytes must
always be sent. Inside a receiver, action on the message should wait until all Data bytes required under
the current status are received. Receivers should ignore Data bytes which have not been properly
preceded by a valid Status byte (with the exception of "Running Status," explained above).

CHANNEL MODES

Synthesizers and other instruments contain sound generation elements called voices. Voice assignment
is the algorithmic process of routing Note On/Off data from incoming MIDI messages to the voices so
that notes are correctly sounded.

Note: When we refer to an "instrument" please note that one physical instrument may act as several
virtual instruments (i.e. a synthesizer set to a 'split' mode operates like two individual instruments).
Here, "instrument" refers to a virtual instrument and not necessarily one physical instrument.

Four Mode messages are available for defining the relationship between the sixteen MIDI channels and
the instrument's voice assignment. The four modes are determined by the properties Omni (On/Off),
Poly, and Mono. Poly and Mono are mutually exclusive, i.e., Poly disables Mono, and vice versa. Omni,
when on, enables the receiver to receive Voice messages on all voice Channels. When Omni is off, the
receiver will accept Voice messages from only selected Voice Channel(s). Mono, when on, restricts the
assignment of Voices to just one voice per Voice Channel (Monophonic.) When Mono is off (Poly On), a
number of voices may be allocated by the Receiver's normal voice assignment (Polyphonic) algorithm.

MIDI 1.0 Detailed Specification 4.2 7

For a receiver assigned to Basic Channel "N," (1-16) the four possible modes arising from the two Mode
messages are:

 Mode Omni

 1 On Poly Voice messages are received from all Voice channels and
 assigned to voices polyphonically.

 2 On Mono Voice messages are received from all Voice Channels, and
 control only one voice, monophonically.

 3 Off Poly Voice messages are received in Voice channel N only, and are
 assigned to voices polyphonically.

 4 Off Mono Voice messages are received in Voice channels N through N+M-1,
 and assigned monophonically to voices 1 through M, respectively.
 The number of voices "M" is specified by the third byte of the Mono
 Mode Message.

Four modes are applied to transmitters (also assigned to Basic Channel N). Transmitters with no
channel selection capability should transmit on Basic Channel 1 (N=1).

 Mode Omni

 1 On Poly All voice messages are transmitted in Channel N.

 2 On Mono Voice messages for one voice are sent in Channel N.

 3 Off Poly Voice messages for all voices are sent in Channel N.

 4 Off Mono Voice messages for voices 1 through M are transmitted in Voice
 Channels N through N+M-1, respectively. (Single voice per
channel).

A MIDI receiver or transmitter operates under only one Channel Mode at a time. If a mode is not
implemented on the receiver, it should ignore the message (and any subsequent data bytes), or switch to
an alternate mode, usually Mode 1 (Omni On/Poly).

Mode messages will be recognized by a receiver only when received in the instrument's Basic Channel —
regardless of which mode the receiver is currently assigned to. Voice messages may be received in the
Basic Channel and in other Voice Channels, according to the above specifications.

Since a single instrument may function as multiple "virtual" instruments, it can thus have more than
one basic channel. Such an instrument behaves as though it is more than one receiver, and each receiver
can be set to a different Basic Channel. Each of these receivers may also be set to a different mode,
either by front panel controls or by Mode messages received over MIDI on each basic channel. Although
not a true MIDI mode, instruments operating in this fashion are described as functioning in "Multi
Mode."

8 Overview

An instrument's transmitter and receiver may be set to different modes. For example, an instrument
may receive in Mono mode and transmit in Poly mode. It is also possible to transmit and receive on
different channels. For example, an instrument may receive on Channel 1 and transmit on Channel 3.

POWER-UP DEFAULT CONDITIONS

It is recommended that at power-up, the basic channel should be set to 1, and the mode set to Omni
On/Poly (Mode 1). This, and any other default conditions for the particular instrument, should be
maintained indefinitely (even when powered down) until instrument panel controls are operated or
MIDI data is received. However, the decision to implement the above, is left totally up to the designer.

MIDI 1.0 Detailed Specification 4.2 9

CHANNEL VOICE MESSAGES

 Note-Off 8nH
 Note-On 9nH
 Poly Key Pressure AnH
 Control Change BnH (0 - 119)
 Program Change CnH
 Channel Pressure DnH
 Pitch Bend EnH

Channel Voice Messages are the bulk of information transmitted between MIDI instruments. They
include all Note-On, Note-Off, program change, pitch-wheel change, after-touch pressure and controller
changes. These terms are defined below.

A single Note-On message consists of 3 bytes, requiring 960 microseconds for transmission. When many
notes are played at the same time, the multiple Note-On messages may take several milliseconds to
transmit. This can make it difficult for MIDI to respond to a large number of simultaneous events
without some slight audible delay. This problem can be relieved to some degree by using the Running
Status mode described on page 5 and in the appendix (A1-3).

TYPES OF VOICE MESSAGES

NOTE-ON: Message is sent by pressing a key or from other triggering devices.

NOTE-OFF: Message is sent by releasing a key.

CONTROL CHANGE: Message is sent when a controller other than a key (e.g. a pedal,

wheel, lever, switch, etc.) is moved in order to modify the sound of a
note (e.g. introducing modulation, sustain, etc.). Control changes
are not used for sending parameters of tones (voices), such as
attack time, filter cut off frequency, etc.

PROGRAM CHANGE: When a "program" (i.e. sound, voice, tone, preset or patch) is

changed, the number corresponding to the newly selected program
is transmitted.

AFTER TOUCH: This message typically is sent by key after-pressure and is used to

modify the note being played. After touch messages can be sent as
Polyphonic Key Pressure or Channel Pressure.

PITCH BEND CHANGE: This message is used for altering pitch. The maximum resolution

possible is 14 bits, or two data bytes.

Voice messages are not exclusively for use by keyboard instruments, and may be transmitted for a
variety of musical purposes. For example, Note-On messages generated with a conventional keyboard
synthesizer may be used to trigger a percussion synthesizer or lighting controller.

10 Channel Voice Messages

NOTE NUMBER

Each note is assigned a numeric value, which is transmitted with any Note-On/Off message. Middle C
has a reference value of 60. This is the middle C of an 88 note piano-style keyboard though it need not be
physically located in the center of a keyboard.

0 12 24 36 48 60 72 84 96 108 120 127

piano range
a c c c c c c c c

VELOCITY

Interpretation of the Velocity byte is left up to the receiving instrument. Generally, the larger the
numeric value of the message, the stronger the velocity-controlled effect. If velocity is applied to volume
(output level) for instance, then higher Velocity values will generate louder notes. A value of 64 (40H)
would correspond to a mezzo-forte note and should also be used by device without velocity sensitivity.
Preferably, application of velocity to volume should be an exponential function. This is the suggested
default action; note that an instrument may have multiple tables for mapping MIDI velocity to internal
velocity response.

0 1 64 127

off ppp ppp mp mf f ff fff

 vvvvvvv = 64: if not velocity sensitive
 vvvvvvv = 0: Note-Off (with velocity of 64)

NOTE-OFF

MIDI provides two roughly equivalent means of turning off a note (voice). A note may be turned off
either by sending a Note-Off message for the same note number and channel, or by sending a Note-On
message for that note and channel with a velocity value of zero. The advantage to using "Note-On at
zero velocity" is that it can avoid sending additional status bytes when Running Status is employed.

Due to this efficiency, sending Note-On messages with velocity values of zero is the most commonly used
method. However, some keyboard instruments implement release velocity where a Note-Off code (8nH)
accompanied by a "velocity off" byte is used. A receiver must be capable of recognizing either method of
turning off a note, and should treat them identically.

 The three methods of using Note-On (9nH) or Note-Off (8nH) are as follows:

1. For a keyboard which does not implement Velocity, the note will be turned on using 9n,
kkkkkkk, 64 (40H) and may be turned off using 9n, 0kkkkkkk, 00000000 or 8n, 0kkkkkkk,
0xxxxxxx (a value of 64 [40H] is used for x).

MIDI 1.0 Detailed Specification 4.2 11

2. For a keyboard which incorporates Key On Velocity, but not Release Velocity the note is
turned on using 9n 0kkkkkkk, 0vvvvvvv and may be turned off using 9n, 0kkkkkkk, 00000000 or
8n, 0kkkkkkk, 0xxxxxxx (a value of 64 (40H) is recommended for x).

3. Where the keyboard implements both Key On Velocity and Release Velocity, a note is turned
on using 9n 0kkkkkkk, 0vvvvvvv, and turned off using 8n, 0kkkkkkk, 0vvvvvvv.

CONTROL CHANGE

The Control Change message is generally used for modifying tones with a controller other than a
keyboard key. It is not for setting synthesizer parameters such as VCF cut-off, envelope decay, etc.
There are some exceptions to the use of the Control Change message, such as the special Bank Select
message and the RPN/NRPN messages (listed below).

CONTROLLER NUMBERS

All controller number assignments are designated by agreement between the MMA and JMSC. The
numbers listed in Table III are specified for standard musical instrument applications. However, many
non-musical devices which implement MIDI, such as lighting controllers, may use designated controller
numbers at their discretion. Due to the limited number of controller numbers it would be impossible to
assign a number to every possible effect (musical and non-musical) used now and in the future. For this
reason, controllers are generally assigned only for purposes associated with musical instruments.

It is up to the manufacturer to inform their users of the fact that a device is using non-standard
controller assignments. Though controllers may be used for non-musical applications, they must still be
used in the format detailed in Table II. Manufacturers can request through the MMA or JMSC that
logical controllers be assigned to physical ones as needed. A controller allocation table should be
provided in the user's operation manual of all products.

A manufacturer wishing to control a number of device-specific parameters over MIDI should used non-
registered parameter numbers and the Data Entry controllers (Data Entry Slider, Increment, and
Decrement messages) as opposed to a large number of controllers. This alleviates possible conflict with
devices responding to the same control numbers unpredictably.

There are currently 120 controller numbers, from 0 through 119 (controller 120 was recently adopted as
a Channel Mode Message and is no-longer considered a Control Change). As shown below, controller
numbers 32 to 63 are used to define an LSB byte for corresponding controllers 0 through 31. Controller
classifications are as follows:

 0 through 31 = MSB of most continuous Controller Data
 32 through 63 = LSB for controllers 0 through 31
 64 through 95 = Additional single-byte controllers
 96 through 101 = Increment/Decrement and Parameter numbers
 102 through 119 = Undefined single-byte controllers

A numeric value (controller number) is assigned to the controllers of the transmitting instrument. A
receiver may use the message associated with a controller number to perform any operation or achieve
any desired effect. Further, a single controller number may be used to change a number of parameters.

12 Channel Voice Messages

controller numbers are classified by various categories. Each controller number corresponds to one byte
of data.

Controller numbers 0 through 31 are for controllers that obtain information from pedals, levers, wheels,
etc. Controller numbers 32 through 63 are reserved for optional use as the LSB (Least Significant Byte)
when higher resolution is required and correspond to 0 through 31 respectively. For example, controller
number 7 (Volume) can represent 128 steps or increments of some controller's position. If controller
number 39, the corresponding LSB number to controller number 7, is also used, 14-bit resolution is
obtained. This provides for resolution of 16,384 steps instead of 128.

If 128 steps of resolution is sufficient the second byte (LSB) of the data value can be omitted. If both the
MSB and LSB are sent initially, a subsequent fine adjustment only requires the sending of the LSB. The
MSB does not have to be retransmitted. If a subsequent major adjustment is necessary the MSB must be
transmitted again. When an MSB is received, the receiver should set its concept of the LSB to zero.

All controller numbers 64 and above have single-byte values only, with no corresponding LSB. Of these,
64 through 69 have been defined for switched functions (hold pedal, etc.) while 91 through 95 are for
controlling the depth of certain external audio effects.

Control numbers 64 through 69 are assigned to functions normally associated with switches (i.e. sustain
or soft pedals). However these controllers can be used to send any continuous value. The reverse can
also be true for a continuous controller such as Modulation Wheel. While this controller is most often
used as a variable control, an on/off modulation switch can also be used. This would be accomplished by
sending the Modulation Controller number (01) and a data byte of either 0 (off) or 127 (on).

If a receiver is expecting switch information it should recognize 0-63 (00H-3FH) as "OFF" and 64-127
(40H-7FH) as "ON". This is because a receiver has no way of knowing whether the message information
is from a switch or a continuous controller. It is very important to always use an existing control
number. The control numbers already adopted for use are listed in Table III. We will discuss some of
them, but not all, below.

GLOBAL CONTROLLERS

If a receiving instrument is in Mode 4 (Omni Off/Mono) and is thus able to respond to more than one
MIDI channel, it is possible to use a Global Controller to affect all voices regardless of MIDI channel.
This is accomplished by sending any controller intended to affect all voices over the MIDI channel one
below the basic channel of the receiver. For example, if a receiving synthesizer in Mode 4 is responding
to channels 6 through 12, its basic channel is 6. Any controllers received on channel 5 would be Global
Controllers and would affect all voices. If the Basic Channel is 1, then the Global Channel wraps to
become 16, though not all receivers may provide this function.

GENERAL PURPOSE CONTROLLERS

Controller numbers 16-19 and 80-83 are defined as General Purpose Controllers. They may be used by a
manufacturer for any added functions able to send or receive some sort of control information needed for
a specific product. They do not have any intrinsic functions assigned to them. General Purpose
Controllers 16-19 are two byte controllers (with controller numbers 48-51 for an optional LSB). General
Purpose Controllers 80-83 are single byte controllers. As an example, an instrument with a special, user
definable joystick or lever assignable to any internal parameter could send and receive General Purpose
Controller numbers for sequencing.

MIDI 1.0 Detailed Specification 4.2 13

CONTROLLER EFFECT

All transmitters should send a value of 00 to represent minimum and 127 (7FH) to represent maximum.
For continuous controllers without a center detented position, it is recommended that the minimum
effect position correspond to 00, and the maximum effect position correspond to 127 (7FH).

Virtually all controllers are defined as 0 being no effect and 127 being maximum effect. There are three
defined controllers that are notably different: Balance, Pan and Expression.

BALANCE: A Balance Controller has been adopted as continuous controller number 8
(08H) with value 00 = full volume for the left or lower half, 64 (40H) = equal
balance, and 127 (7FH) = full volume for the right or upper half. This
controller determines the volume balance between two different sound
sources.

PAN: A Pan Controller has been adopted as continuous controller number 10 (0AH)

with value 00 = hard left, 64 (40H) = center, and 127 (7FH) = hard right. This
controller determines where a single sound source will be located in a stereo
field.

EXPRESSION: An Expression Controller has been adopted as continuous controller number

11 (0BH). Expression is a form of volume accent above the programmed or
main volume.

BANK SELECT

Bank Select is a special controller. The Bank Select message is an extension of the Program Change
message and is used to switch between multiple banks. For example, a bank select message could be
used to select more than 128 programs, or switch between internal memory and external RAM card.

Control Change numbers 00H and 20H are defined as the Bank Select message. 00H is the MSB and
20H is the LSB for a total of 14 bits. This allows 16,384 banks to be specified.

The transmitter must transmit the MSB and LSB as a pair, and the Program Change must be sent
immediately after the Bank Select pair. If their is any delay between these messages and they are
passed through a merging device (which may insert another message) the message may be interpreted
incorrectly.

The messages Bank Select MSB, LSB and Program number will select a specific program. After
switching to another bank, any Program Change messages transmitted singularly will select other
program in that bank.

After the receiver as received the entire Bank Select messages it will normally change to a new program.
The program must change upon the receipt of the Program Change message. However, the program
need not be changed for a note which is already sounding. When the Bank Select message is received,
the receiving device must remember that bank number in readiness for the following Program Change.
Bank Select alone must not change the program. This is to assure that multiple devices change
concurrently.

14 Channel Voice Messages

The 14 bit Bank Select value corresponds to bank numbers as follows:

 MSB LSB Bank Number
 00H 00H Bank 1
 00H 7FH Bank 128
 01H 00H Bank 129
 7FH 7FH Bank 16,384

As with program numbers, banks begin counting from 1. Thus the actual bank number will be (MIDI
value + 1).

LEGATO FOOTSWITCH

 Bn 44 vv Legato Footswitch
 vv = 00-3F Normal
 vv = 40-7F Legato

Legato Footswitch is a recent addition to the specification. This controller is used to turn monophonic
legato response in a receiving instrument on and off. When turned on the instrument goes into a
monophonic mode; if a new Note-On is received before the Note-Off for the currently sounding note,
pitch is changed without re-attacking the envelopes or (if possible) playing the attack portion of the
sound. When turned off the voice assignment mode (polyphonic or monophonic) returns to the state it
was in prior to receiving the Legato On command.

Note: This message is not a replacement for proper Mode 4 legato operation. Nor is it a replacement for
sending Note-Offs for every Note-On sent. It is specifically intended as a useful performance controller.

EFFECTS CONTROLLER REDEFINITION

Controller numbers 91 – 95 are defined as Effects Depth 1 through Effects Depth 5 and can be used for
controlling various effects. Their former titles of External Effects Depth, Tremolo Depth, Chorus Depth,
Celeste (Detune) Depth, and Phaser Depth are now the recommended defaults.

SOUND CONTROLLERS

Controllers 46H through 4FH are defined as “Sound Controllers.” Manufacturers and users may map
any functions they desire to these ten controllers. However, to further aid standardization and easy set-
up for users, the MMA and JMSC may determine “default” assignments for these controllers. A
manufacturer may independently assign other functions to these controllers, but it should be understood
that the MMA and JMSC may later assign different defaults to them.

Five Sound Controller defaults have currently been defined by the MMA and JMSC:

Number Name Instruments
46H (70) Sound Controller #1 Sound Variation
47H (71) Sound Controller #2 Timber/Harmonic Intensity
48H (72) Sound Controller #3 Release Time
49H (73) Sound Controller #4 Attack Time
4AH (74) Sound Controller #5 Brightness

MIDI 1.0 Detailed Specification 4.2 15

SOUND VARIATION CONTROLLER:

 Bn 46 vv Sound Variation

This controller is used to select alternate versions of a sound during performance. Note that it is
different from a program change in several ways:

1. The variation (alternate sound) is an intrinsic part of the program which is being played, and
is programmed in the patch.

2. The variation is usually related to the primary sound – for example, a sax and an overblown
sax, bowed and pizzicato strings, a strummed and muted guitar, etc.

3. The variation to be used is decided at the time of the Note-On. For example, if the value of
SVC is set to 00, notes are sounded, and then SVC is changed to 24H, the notes currently
sounding will not change. Any new notes will take the variation determined by the new SVC
value. If the old notes are released, they will finish in their original manner.

SVC actually acts as a multi-level switch. An instrument’s levels of variations should be mapped
over the entire 00-7FH range of the controller. For example, if an instrument had only a single SVC
switch, it would transmit a value of 00) for the primary sound and 7FH for the secondary sound. If
an instrument had four variations, it would transmit these as 00, 20H, 40H, and 7FH. The first
instrument would receive any value in the range of 40H-7FH to select its secondary sound.

TIMBRE CONTROLLERS:

 Bn 47 vv Timbre/Harmonic Intensity
 Bn 4A vv Brightness

The Harmonic Content controller (commonly known as “timbre”) is intended as a modifier of the
harmonic content of a sound, e.g. FM feedback, FM modulation amount, waveform loop points, etc.
The receiving instrument determines the application of this controller according to its voice
architecture.

Harmonic Content should be treated as an absolute rather than relative value, and should be
handled as a modulation input by the receiver.

The Brightness controller is aimed specifically at altering the brightness of the sound. In most sound
modules, it would correspond to a low pass filter’s cutoff frequency, although it might also control
EQ or a harmonic enhancer/exciter.

Brightness should be treated as a relative controller, with a data value of 40H meaning no change,
values less than 40H meaning progressively less bright, and values greater than 40H meaning
progressively more bright.

Both of these controllers are intended as a performance controllers – not as a sound parameter
editing controllers (in other words, these messages do not change the memorized data of a preset).
They have no fixed association with any physical controller.

The receiving instrument should be able to respond to these controllers while sustaining notes
without audible glitches or re-triggering of the sound. The effective range of these controllers may be
programmed per preset, if desired.

16 Channel Voice Messages

ENVELOPE TIME CONTROLLERS:

 Bn 48 vv Release Time
 Bn 49 vv Attack Time
 vv = 00 - 3F = shorter times (00 = shortest adjustment)
 vv = 40 = no change in times
 vv = 41 - 7F = longer times (7F = longest adjustment)

These controllers are intended to adjust the attack and release times of a sound relative to its pre-
programmed values. The manufacturer and user should decide which envelopes in a voice are
affected; the default should be all envelopes. These controllers should affect all envelopes affected
about to enter their release or attack phases (respectively); the manufacturer may allow an option to
affect envelope phases already started.

These envelope time controllers do not replace the effect attack or release velocity may have on the
envelope times of the sound; they should interact with them in a predictable manner. They have no
fixed association with a physical controller. The effective range of these controllers may be
programmed per preset, if desired.

These are intended as a performance controllers – not as a sound parameter editing controllers (in
other words, these messages do not change the memorized data of a preset). The receiving
instrument should be able to respond to these controllers while sustaining notes and without audible
glitches or re-triggering of the sound.

PORTAMENTO CONTROLLER

 Bn 54 kk
 n = channel
 kk = source note number for pitch reference

Portamento Control (PTC) is a recent addition, and defines a continuous controller that communicates
which note number the subsequent note is gliding from. It is intended for special effects in playing back
pre-sequenced material, so that legato with portamento may be realized while in Poly mode.

When a Note-On is received after a Portamento Control message, the voice’s pitch will glide from the key
specified in the Portamento Control message to the new Note-On’s pitch at the rate set by the
portamento time controller (ignoring portamento on/off).

A single Portamento Control message only affects the next Note-On received on the matching channel
(i.e. it is reset after the Note-On). Receiving a Portamento Control message does not affect the pitch of
any currently sustaining or releasing notes in Poly modes; if in Mono mode or if Legato Footswitch is
currently on, a new overlapped note event would result in an immediate pitch jump to the key specified
by the portamento Control message, and then a glide at the current portamento rate to the key specified
by the new Note-On.

In all modes, the note is turned off by a note that matches the Note-On key number; not the key number
stated in the Portamento Control message. Pitch bend offsets the pitch used by both the Portamento
Control starting note and the target Note-On.

If there is a currently sounding voice whose note number is coincident with the source note number, the
voice’s pitch will glide to the new Note-On’s pitch according to the portamento time without re-attacking.
Then, no new voice should be assigned.

MIDI 1.0 Detailed Specification 4.2 17

The single Portamento Control message only affects the next Note-On received on the matching channel
(in other words, it is reset after the Note-On). Receiving a Portamento Control message does not affect
the pitch of other currently sounding voices except a voice whose note number is coincident with the
source key number of the Portamento Control message in Poly mode.

Example 1:

MIDI Message Description Result
90 3C 40 Note-On #60 #60 on (middle C)
B0 54 3C PTC from #60 no change in current note
90 40 40 Note-On #64 re-tune from #60 to #64
80 3C 40 Note-Off #60 no change
80 40 40 Note-Off #64 #64 off

Example 2:

MIDI Message Description Result
B0 54 3C PTC from #60 no change
90 40 40 Note-On #64 #64 with glide from #60
80 40 40 Note-Off #64 #64 Off

REGISTERED AND NON-REGISTERED PARAMETER NUMBERS

Registered and Non-Registered Parameter Numbers are used to represent sound or performance
parameters. As noted below, Registered Parameters Numbers are agreed upon by the MMA and JMSC.
Non-Registered Parameter Numbers may be assigned as needed by individual manufacturers. The basic
procedure for altering a parameter value is to first send the Registered or Non-Registered Parameter
Number corresponding to the parameter to be modified, followed by the Data Entry, Data Increment, or
Data Decrement value to be applied to the parameter.

There are several rules and suggestions as to the use of these parameter numbers and controllers:

1. A manufacturer may assign any desired parameter to any Non-Registered Parameter Number.
This list should be published in the owner's manual.

2. Reception of Non-Registered Parameter Numbers should be disabled on power-up to avoid

confusion between different machines. Transmission of these numbers should be safe at any time
if this is done.

3. After the reception of Non-Registered (or Registered) Parameter Numbers has been enabled, the

receiver should wait until it receives both the LSB and MSB for a parameter number to ensure
that it is operating on the correct parameter.

4. The receiver should be able to respond accordingly if the transmitter sends only an LSB or MSB to

change the parameter number. However, since the transmitter can't know when reception was
enabled on the receiver which will be waiting for both the LSB and MSB (at least initially), it is
recommended that the LSB and MSB be sent each time a new parameter number is selected.

5. The Registered Parameter Numbers are agreed upon by the MMA and JMSC. Since this is a

standardized list, reception of these Registered Parameter Numbers may be enabled on power-up.

6. Once a new Parameter Number is chosen, that parameter retains its old value until a new Data

Entry, Data Increment, or Data Decrement is received.

18 Channel Voice Messages

PITCH BEND SENSITIVITY:

Pitch Bend Sensitivity is defined as Registered Parameter Number 00 00. The MSB of Data Entry
represents the sensitivity in semitones and the LSB of Data Entry represents the sensitivity in
cents. For example, a value of MSB=01, LSB=00 means +/- one semitone (a total range of two
semitones).

MASTER TUNING:

Registered Parameter numbers 01 and 02 are used for Master Tuning control. They are
implemented as follows:

RPN 01 - FINE TUNING:

Resolution: 100/8192 cents
Range: 100/8192* (-8192) to 100/8192* (+8191)

Control Value Displacement in cents from A440
MSB LSB
00 00 100/8192* (-8192)
40H 00 100/8192* (0)
7FH 7FH 100/8192* (+8191)

RPN 02 - COARSE TUNING:

Resolution: 100 cents
Range: 100* (-64) to 100* (+63)

Control Value Displacement in cents from A440
MSB LSB
00 XX 100* (-64)
40H XX 100* (0)
7FH XX 100* (+63)

PROGRAM CHANGE

This message is used to transmit the program or "patch" number when changing sounds on a MIDI
instrument. The message does not include any information about the sound parameters of the selected
tone. As the various parameters that constitute a program are very different from one MIDI instrument
to another it is much more efficient to address a sound simply by its internal number.

Program Change messages are most often sent when physically selecting a new sound on an instrument.
However, if the transmitting instrument does not produce its own sound, a button or any other physical
controller can be used for transmitting program change messages to slave devices.

It is not often that the exact same tones are in the transmitting and receiving instruments, so some care
must be taken when assigning tones to a given tone number. The ability to reassign programs to a given
program change number should be part of an instrument's capabilities. Some instruments number their
internal patches in octal numerics. This should have no effect on the numbers used for patch change.
Numbering should begin with 00H and increment sequentially. For example, octal 11 would be 00H, 12
would be 01H, etc.

MIDI 1.0 Detailed Specification 4.2 19

It may not always be desirable for a tone change in a transmitting instrument to cause a program
change in a receiving instrument. Some means of disabling the sending or reception of program change
should be provided. Program change messages do not necessarily need to change tones. In some
instruments, such as a drum machine, the message may be used to switch to a different rhythmic
pattern. In MIDI controlled effects devices, the program change message may be used to select a
different preset effect.

Note: also see Bank Select.

PITCH BEND CHANGE

This function is a special purpose pitch change controller, and messages are always sent with 14 bit
resolution (2 bytes). In contrast to other MIDI functions, which may send either the LSB or MSB, the
Pitch Bender message is always transmitted with both data bytes. This takes into account human
hearing which is particularly sensitive to pitch changes. The Pitch Bend Change message consists of 3
bytes when the leading status byte is also transmitted. The maximum negative swing is achieved with
data byte values of 00, 00. The center (no effect) position is achieved with data byte values of 00, 64
(00H, 40H). The maximum positive swing is achieved with data byte values of 127, 127 (7FH, 7FH).

Sensitivity of Pitch Bend Change is selected in the receiver. It can also be set by the receiver or
transmitted via Registered Parameter number 00 00.

AFTERTOUCH

Two types of Aftertouch messages are available: one that affects an entire MIDI channel and one that
affects each individual note played. They are differentiated by their status byte. In either case, the
Aftertouch value is determined by horizontally moving the key (front-to-rear or left-to-right), or by
pressing down on the key after it "bottoms out". Devices such as wind controllers can send Aftertouch
from increasing breath pressure after the initial attack. The type of tone modification created by the
Aftertouch is determined by the receiver. Aftertouch may be assigned to affect volume, timbre, vibrato,
etc.

If a "Channel Pressure" (Dn, 0vvvvvvv) message is sent, then the Aftertouch will affect all notes playing
in that channel.

If a "Polyphonic Key Pressure" (An, 0kkkkkkk, 0vvvvvvv) message is sent discrete Aftertouch is applied
to each note (0kkkkkkk) individually.

20 Channel Mode Messages

CHANNEL MODE MESSAGES

(Control Change Status) BnH
 All Sound Off 120
 Reset All Controllers 121
 Local Control 122
 All Notes Off 123
 Omni Off 124
 Omni On 125
 Mono On (Poly Off) 126
 Poly On (Mono Off) 127

A Mode message is sent with the same Status Byte as a Control Change message. The second byte of the
message will be between 121 (79H) and 127 (7FH) to signify a mode message. Mode messages determine
how an instrument will receive all subsequent voice messages. This includes whether the receiver will
play notes monophonically or polyphonically and whether it will respond only to data sent on one
specific voice channel or all of them.

MODE MESSAGES AS ALL NOTES OFF MESSAGES

Messages 123 through 127 also function as All Notes Off messages. They will turn off all voices
controlled by the assigned Basic Channel. These messages should not be sent periodically, but only for a
specific purpose. In no case should they be used in lieu of Note-Off commands to turn off notes which
have been previously turned on. Any All Notes Off command (123-127) may be ignored by a receiver
with no possibility of notes staying on, since any Note-On command must have a corresponding specific
Note-Off command.

THE BASIC CHANNEL OF AN INSTRUMENT

Mode messages are recognized only when sent on the Basic Channel to which the receiver is assigned,
regardless of the current mode. The Basic Channel is set in the transmitter or receiver either by
permanent "hard wiring," by panel controls, or by System Exclusive messages, and cannot be changed by
any MIDI mode or voice message. Mode messages can only be transmitted and received on an
instrument's Basic Channel.

RECEIVER'S MODE (OMNI ON/OFF & POLY/MONO)

The receiver can be set to any of four modes which determine how it will recognize voice messages. The
four modes are set with two mode messages: Omni On/Off, and Poly/Mono.

 Mode 1: Omni On, Poly
 Mode 2: Omni On, Mono
 Mode 3: Omni Off, Poly
 Mode 4: Omni Off, Mono

MIDI 1.0 Detailed Specification 4.2 21

Mono and Poly determine how the receiver's voices will be assigned when more than one note is received
simultaneously. In Mono mode, each voice in the receiver will respond monophonically to note messages
on a particular MIDI channel. This would be like having several Monophonic synthesizers in a single
box. In Poly mode, voices in the receiver will respond to note messages polyphonically.

These four modes may be changed by panel controls on the receiver. Care must be taken, however, since
it is possible that the receiver may be "disabled" by setting it to a mode where it will not recognize or
correctly respond to data received from a transmitter. As the receiver has no way of knowing the mode of
the transmitter, there is no guarantee that a receiver will interpret messages as expected if it has been
manually set to a different mode.

The recommended start up condition is Omni Mode On. This allows two instruments to be connected and
played immediately without concern for selecting the instruments' basic channel. The receiver will
respond to voice messages on all MIDI channels. With Omni off, a receiver would only respond to the
voice messages on the Basic Channel to which it is set.

Voice Message Paths with Poly/Mono and Omni On/Off Mode Selections:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Channel Num.

MIDI In

Omni "Switch"
(Shown in Omni On Mode)

Poly/Mono "Switch"
(Shown in Poly Mode)

Mono Voice
Assigner

Poly Voice
Assigner

Basic Channel
Select "Switch"
(Shown @ Channel 1)

When the receiver is in Poly mode and more than one note is received on the recognized channel(s),
those notes will be played simultaneously to the limit of the receiver's number of voices. The
recognizable channel(s) refers to all MIDI channels when Omni is On, or to only the receiver's Basic
Channel when Omni is Off.

When the receiver is in Mono mode, notes are assigned differently depending on whether Omni mode is
On or Off.

MONO MODE

Mono mode is particularly useful for receiving MIDI data from guitar controllers, but can be used with
keyboards and other controller devices as well. It is useful for such purposes as independent pitch
bending of individual notes, portamento at specific rates between two notes, or transposition effects.

22 Channel Mode Messages

One of the reasons to use Mono mode is so that a receiver may respond in legato fashion to incoming
note messages. If a Note-On is received, and then a second Note-On received without the first Note-Off
being received, then the receiving instrument should change pitch to the new note, but not restart the
envelopes (they should continue as if the same note was still being held). For a transmitter wishing a
receiver to respond in legato fashion, the timing of the note messages would be like this:

 <Note-On #1> <Note-On #2> <Note-Off #1>, etc.

MIDI rules still apply - a Note-Off must eventually be sent for every note. Also see Legato Mode.

OMNI-OFF/MONO

The third byte of a Mono Message specifies the number of channels in which Monophonic Voice
messages are to be sent. If the letter M represents the number of acceptable MIDI channels, which may
range from 1 to 16, and the letter N represents the basic channel number (1-16), then the channel(s)
being used will be the current Basic Channel (N) through N+M-1 up to a maximum of 16. M=0 is a
special case directing the receiver to assign all its voices, one per channel, from the Basic Channel N
through 16.

TRANSMITTER: When a transmitter set to Omni-Off/Mono mode, voice messages are sent
on channels N through N+M-1. This means that each individual voice (or
note) is sent on a single channel. The number of transmitted channels is
limited to the number of voices in the transmitter. Additional notes will be
ignored. When transmitting from a 16 voice instrument whose basic
channel number N is set higher than 1, N+M-1 will be greater than 16 and
notes assigned to nonexistent channels above 16 should not be sent. If full
16 voice transmission is possible, the basic channel N should be set to 1.
For example, a four-voice instrument set to a basic channel of 3 would
transmit note messages on channels 3, 4, 5 and 6.

RECEIVER: In a receiver set to Omni-Off/Mono mode, the voice messages received in

channels N through N+M-1 are assigned monophonically to its internal
voices 1 through M. If N=1, and M=16 (maximum), then the messages are
received on Channels 1 through 16. Should more than one Note-On
message be sent for a given channel, the receivers response is not specified.
Only one note (or voice) can be assigned to a given MIDI channel in this
mode. M=0 is a special case directing the receiver to assign its voices, one
per channel, from the basic channel N through 16, until all available voices
are used.

OMNI-ON/MONO

When a transmitter is set to Omni-On/Mono mode, voice messages for a single voice are sent on
channels N. If a receiver is set to Omni-On/Mono mode, then voice messages received from any voice
channel will control a single voice monophonically. Regardless of the number of MIDI channels being
received or the polyphony on any of them, the receiver will only play one note at a time.

TRANSMITTER: A transmitter may send a Mono message to put a receiver into Mono mode.
However, since a receiver may not be capable of Mono mode, the
transmitter may continue to send note messages polyphonically. Even if
the transmitter and receiver are both playing monophonically, multiple
Note-On messages can be sent .

MIDI 1.0 Detailed Specification 4.2 23

RECEIVER: When a Note-On message is sent in the Omni-On/Mono mode, the receiver
will play that note regardless of channel number. If the value of M is 2 or
greater when receiving a Mono On message and Omni is on, M is ignored
and the receiver will still be monophonic. When Omni is on, it is
inappropriate to send a Mono message with M greater than 1.

If a particular channel mode is not available on a receiver, it may ignore the message, or it may switch
to an alternate mode (usually mode 1, which is Omni On/Poly).

MODES NOT IMPLEMENTED IN A RECEIVER

A transmitter could possibly request a mode not implemented in a receiver. For example, a transmitter
might request Omni-Off Mono with M=2, but the receiver has only Omni-On Mono or Omni-On Poly
capability. In this situation the receiver could do one of two things: (1) It can ignore the request, and no
notes will sound; or (2) it can change to Omni-On Poly, and notes from both channels will play. The
latter choice is recommended so that the receiver will respond to notes from the different channels.

MONO POLY
M=1 M 1

use
Mode 2

use
Mode 1 Mode 3

Mode 1Mode 2Omni On

Omni Off

If Receiver does
not have Mode 4, it
can disregard messages,
or act as shown here

There is no way for a transmitter to know if a receiver has responded correctly to a particular Mode
message. By implementing the response outlined above, unexpected results will be minimized. If it is
possible for a receiver to ignore continuous controllers, it should do so in order that pitch bend or
modulation intended for a single voice will not affect all the voices in the receiver.

A transmitter may send Omni On or Omni Off messages and Poly or Mono messages in any order. A
receiver should set individual flags indicating Omni On/Off and Poly/Mono.

A receiver unable to accommodate a mode message such as Omni-Off Mono may switch to an alternate
mode such as Omni-On Poly. If an Omni-Off message is then received, the receiver should not change to
Omni-Off unless a Poly message is also received.

It is acceptable to repeat either of the Omni On/Off or Poly/Mono messages when changing modes. For
example, if a transmitter sends Omni Off Poly and later sends Omni On Poly, the retransmission of the
"Poly" message should cause no problem. If a receiver cannot accommodate an Omni-Off Mono mode
change from a transmitter, it should switch to an alternate mode such as Omni-On Poly as outlined
above.

24 Channel Mode Messages

1 0 0

0 1 0

Omni
Off Mono

Omni
Off Poly

Receive Mode Messages

On = 1
Off = 0

Mono = 1
Poly = 0

Omni Flag

Mono/Poly
Flag

(Power-Up Status) Receiver
Switches to
Omni-Off

Unit Changes
to Omni-On/Poly
(Mode 1)

Receiver Changes
to Omni-Off/Poly
(Mode 3)

Possible
Receive Modes

OMNI
MONO/POLY

Alternate
Receive Modes

Power Up

1
0

0
0

Omni-Off

0
1

0
1

1

3

N/A

N/A

1
(Omni-On, Poly)

1
(No Change)

Mono M >= 2

0
0

3

Omni-Off Poly

Receive Mode Messages

N/A = A Mode Which is not Implemented in the RecOMNI-ON = 1, OMNI-OFF = 0
MONO = 1, POLY = 0

ALL NOTES OFF

All Notes Off (123) is a mode message which provides an efficient method of turning off all voices turned
on via MIDI. While this message is useful for some applications, there is no requirement that a receiver
recognize it. Since recognition of All Notes Off is not required of the receiver, all notes should first be
turned off by transmitting individual Note-Off messages prior to sending an All Notes Off.

In a MIDI keyboard instrument, notes turned on via the local keyboard should be differentiated from
notes turned on via MIDI In.

Press
a Key

VOICE

MIDI Out MIDI In MIDI Thru

(Optional)

MIDI 1.0 Detailed Specification 4.2 25

In an instrument structured as shown above, it is possible that the instrument may not differentiate
between MIDI In and the local keyboard commands. If an All Notes Off is received via MIDI, then all
notes will be turned off, including those being played on the instrument's own keyboard. This is not
correct implementation of the All Notes Off message. All Notes Off should only turn off those notes that
were turned on via MIDI. If an instrument cannot differentiate between its local keyboard and incoming
MIDI messages, All Notes Off should be ignored.

Receivers should ignore an All Notes Off message while Omni is on (Modes 1 & 2). For example, if a
receiver gets an All Notes Off from a sequencer that inserts such messages whenever all keys are
released on a track, and two tracks were recorded on such a sequencer (even on different MIDI
channels), the All Notes Off message would cut off sustaining notes recorded on the other track.

While MIDI devices should be able to respond to the All Notes Off message, an All Notes Off message
should not be sent periodically as part of normal operation. This message should only be used to indicate
that the entire MIDI system is "at rest" (i.e. when a sequence has stopped). However, a receiver should
respond to an All Notes Off (unless Omni is on) whenever it is received, even when the system is not "at
rest".

Although other mode messages will turn off all notes, they should not be used as a substitute for the All
Notes Off message when desiring to turn off all notes. When the receiver is set to Omni-Off Poly mode
(Mode 3), All Notes Off will cancel Note-On messages on the basic channel only. When a receiver is set to
Omni-Off Mono mode (Mode 4), All Notes Off should only cancel Note-On messages on the channel over
which the message was received.

Note: See more on All Notes Off in the Additional Explanations and Application Notes.

ALL SOUND OFF

All Sound Off (120) is a mode message intended to silence all notes currently sounding by instruments
receiving on a specific MIDI channel. Upon reception, all notes currently on are turned off and their
volume envelopes are set to zero as soon as possible.

This message is not a replacement for the All Notes Off message, Note-Off messages, Hold Off, or Master
Volume Off. The correct procedure of sending a Note-Off for each and every Note-On must still be
followed.

Although originally intended for silencing notes on a MIDI sound module, the All Sound Off message
may be used to turn off all lights at a MIDI-controlled lighting console or to silence and clear the audio
buffer of a MIDI-controlled reverb of digital delay.

RESET ALL CONTROLLERS

When a device receives the Reset All Controllers message (121), it should reset the condition of all its
controllers (continuous and switch controllers, pitch bend, and pressures) to what it considers an ideal
initial state (Mod wheel to 0, Pitch Bend to center, etc.). Reception follows the same rules as All Notes
Off — Ignore if Omni is On .

Sequencers that wish to implement Reset All Controllers, but want to accommodate devices that do not
implement this command, should send what they believe to be the initial state of all controllers first,
followed by this message. Devices that respond to this message will end up in their preferred state,
while those that do not will still be in the sequencer's chosen initialized state.

26 Channel Mode Messages

LOCAL CONTROL

Channel Mode Message 122, Local Control, is used to interrupt the internal control path between the
keyboard and the sound-generating circuitry of a MIDI synthesizer. If 0 (Local Off) is received the path
is disconnected, keyboard data goes only to MIDI Out and the sound-generating circuitry is controlled
only by incoming MIDI data. If a 7FH (Local On) is received, normal operation is restored. Local Control
should be switchable from an instrument's front panel.

When a keyboard instrument is being used as a slave device via MIDI, it may be desirable to disconnect
the instrument's keyboard from its internal synthesizer so that local performance cannot interfere with
incoming data. This may also save scanning time and thus speed up response to MIDI information.
Instruments should power-up in Local On mode. An instrument should continue to send MIDI
information from its keyboard while in Local Off.

MIDI 1.0 Detailed Specification 4.2 27

SYSTEM COMMON MESSAGES

 MIDI Time Code Quarter Frame F1H
 Song Position Pointer F2H
 Song Select F3H
 Tune Request F6H
 EOX (End of Exclusive) F7H

MTC QUARTER FRAME

For device synchronization, MIDI Time Code uses two basic types of messages, described as Quarter
Frame and Full. There is also a third, optional message for encoding SMPTE user bits. The Quarter
Frame message communicates the Frame, Seconds, Minutes and Hours Count in an 8-message
sequence. There is also an MTC FULL FRAME message which is a MIDI System Exclusive Message.

See the separate MTC specification document for complete details.

SONG POSITION POINTER

A sequencer's Song Position (SP) is the number of MIDI beats (1 beat = 6 MIDI clocks) that have
elapsed from the start of the song and is used to begin playback of a sequence from a position other than
the beginning of the song. It is normally set to 0 when the START button is pressed to start sequence
playback from the very beginning. It is incremented every sixth MIDI clock until STOP is pressed. If
CONTINUE is pressed, it continues to increment from its current value. The current Song Position can
be communicated via the Song Position Pointer message and can be changed in a receiver by an
incoming Song Position Pointer message. This message should only be recognized if the receiver is set to
MIDI sync (external) mode.

Song Position Pointer is always multiplied by 6 times the MIDI clocks (F8H). Thus the smallest Song
Position change is 6 MIDI clocks, or 1/16 note. The result is then multiplied by the internal time base of
the sequencer. Here is an example:

 If Song Position Pointer = 10

 Multiply this times 6 MIDI clocks (10 X 6 = 60)

 Multiply the result (60) times the sequencer time base. If the time base is 96 clocks per
 beat, there are four internal clocks between each F8 so the result is 240 (60 X 4 = 240)

 Set internal pointers to begin playback 240 clock tics into the sequence.

28 System Common Messages

The Start message (FAH), is treated by MIDI as if it were a command comprised of a Song Position
Pointer value of 0 plus a continue message (FBH).

Since the Start message and the Continue message can be received while the sequencer has been
stopped by a Stop message (FCH), the sequencer should be able to start quickly in response to a Start
message, even if the sequencer is in the middle of a song.

Song Position Pointer messages should be ignored if the instrument is not in MIDI sync mode (see
System Real Time messages section for details on MIDI sync).

RECOMMENDED USE OF SONG POSITION POINTER

Previously it was recommended that a device wait 5 seconds after transmitting a Song Position Pointer
message before it transmitted a Continue message and resumed sending MIDI Clocks. However, it is
now recommended that any device receiving a Song Position Pointer (SPP) message be able to correctly
receive a Continue message and subsequent MIDI Clocks while it is in the process of locating to the new
position in the song. Upon locating to the new position the device must then play in sync with the device
transmitting the SPP.

For example, if the transmitter sends an SPP message with a value of 4 (24 MIDI Clocks), and while
locating receives a Continue as well as an additional 3 MIDI Clocks, the receiving device should begin
from the 27th clock in the song.

MIDI 1.0 Detailed Specification 4.2 29

SONG SELECT

Specifies which song or sequence is to be played upon receipt of a Start message in sequencers and drum
machines capable of holding multiple songs or sequences. This message should be ignored if the receiver
is not set to respond to incoming Real Time messages (MIDI Sync).

RECEPTION OF SONG POSITION AND SONG SELECT

When a device receives and recognizes a Song Position or Song Select message, it can take a relatively
long time to implement the command. The receiver must continue to accept MIDI clocks after a Start
has been received, and increment its Song Position while it is computing and locating to the correct
address in memory for playback. For example, if a Song Position Pointer message is received which
contains a value of 4 (24 MIDI Clocks), and during the process of locating a Continue and 3 clocks are
received, the device should start playing from the point in its internal sequence corresponding to the
27th clock. If a Timing Clock message is missed while the receiver is dealing with Song Position, the
receiver may not synchronize correctly. Song Position or Song Select messages may only be sent when
the system is not playing.

TUNE REQUEST

Used with analog synthesizers to request that all oscillators be tuned.

EOX

Used as a flag to indicate the end of a System Exclusive transmission. A System Exclusive message
starts with F0H and can continue for any number of bytes. The receiver will continue to wait for data
until an EOX message (F7H) or any other non-Real Time status byte is received.

To avoid hanging a system, a transmitter should send a status byte immediately after the end of an
Exclusive transmission so the receiver can return to normal operation. Although any Status Byte (except
Real-Time) will end an exclusive message, an EOX should always be sent at the end of a System
Exclusive message. Real time messages may be inserted between data bytes of an Exclusive message in
order to maintain synchronization, and can not be used to terminate an exclusive message.

30 System Exclusive Messages

SYSTEM REAL TIME MESSAGES

 Timing Clock F8H
 Start FAH
 Continue FBH
 Stop FCH
 Active Sensing FEH
 System Reset FFH

System Real Time messages are used to synchronize clock-based MIDI equipment. These messages
serve as uniform timing information and do not have channel numbers.

Real Time messages can be sent at any time and may be inserted anywhere in a MIDI data stream,
including between Status and Data bytes of any other MIDI messages. Giving Real-Time messages high
priority allows synchronization to be maintained while other operations are being carried out.

As most keyboard instruments do not have any use for Real-Time messages, such instruments should
ignore them. It is especially important that Real-Time messages do not interrupt or affect the Running
Status buffer. A Real-Time message should not be interpreted by a receiver as a new status.

TIMING CLOCK: Clock-based MIDI systems are synchronized with this message, which is
sent at a rate of 24 per quarter note. If Timing Clocks (F8H) are sent during
idle time they should be sent at the current tempo setting of the transmitter
even while it is not playing. Receivers which are slaved to incoming Real
Time messages (MIDI Sync mode) can thus phase lock their internal clocks
while waiting for a Start (FAH) or Continue (FBH) command.

START: Start (FAH) is sent when a PLAY button on the master (sequencer or drum

machine) is pressed. This message commands all receivers which are slaved
to incoming Real Time messages (MIDI Sync mode) to start at the beginning
of the song or sequence.

CONTINUE: Continue (FBH) is sent when a CONTINUE button is hit. A sequence will

continue from its current location upon receipt of the next Timing Clock
(F8H).

STOP: Stop (FCH) is sent when a STOP button is hit. Playback in a receiver should

stop immediately.

START OR CONTINUE MESSAGES

When a receiver is synchronized to incoming Real Time messages (MIDI Sync mode), the receipt of a
Start (FAH) or Continue (FBH) message does not start the sequence until the next Timing Clock (F8H)
is received. The FA and F8 should be sent with at least 1 millisecond time between them so the receiver
has time to respond. However, a receiver should be able to respond immediately to the first F8H after
receiving the Start or Continue.

MIDI 1.0 Detailed Specification 4.2 31

Neither the transmitter
nor the receiver advances
during this interval

FA F8 F8

When the receiver is operating off of its internal clock it may ignore all Start, Stop and Continue
messages or it may respond to these messages and start, stop or continue playing according to its own
internal clock when these messages are received over MIDI. This decision is left up to the designer.

STOP MESSAGE

When a master sequencer is stopped it should send out the Stop message (FCH) immediately, so that
any other devices slaved to it will also stop. The sequencer's internal location should be set as it was in
when Stop was sent. This way, if Continue is pressed, all instruments connected to the master will
continue from the same point in the song without need for a Song Position Pointer message.

Upon receiving a Stop message (FCH), a receiver should stop playing and not increment its Song
Position when subsequent Timing Clock messages are received. The current Song Position should be
maintained in the event that a Continue is received and the sequence is continued from the point that it
was stopped. If a Song Position Pointer message is received, the device should change its internal Song
Position and prepare to begin playback from the new location.

If any Note-Off messages have not been sent for corresponding Note-Ons sent before Stop was pressed,
the transmitter should send the correct Note-Off messages to shut off those notes. An All Notes Off
message can also be sent, but this should not be sent in lieu of the corresponding Note-Off messages as
not every instrument responds to the All Notes Off message. In addition to note events, any controllers
not in their initialized position (pitch wheels, sustain pedal, etc.) should be returned to their normal
positions.

The following illustration shows a method to keep correct synchronization. These examples use an
internal timebase of 96 pulses per 1/4 note, or 4 internal clocks per MIDI clock (F8H).

MIDI In

MIDI
Out

Internal
Seq.

FA F8 F8 FC F8

FA

631 60 61 62 Stop0 2

F8 FC
at any time here

F8

MIDI In

MIDI
Out

Internal
Seq.

FB F8 F8

64 65 66 67 68 69 70

FB F8 F8

32 System Exclusive Messages

RELATIONSHIP BETWEEN CLOCKS AND COMMANDS

A sequencer may echo incoming timing and voice information out the MIDI Out port while playing its
own sequenced parts. System Real Time messages should always be given time priority when the data is
merged in this manner. To accomplish this, it is permissible to change the actual order of bytes to
accommodate Real Time messages. However, all Real Time bytes (F8H, FAH, FBH, FCH) must be sent
in the order in which they are received.

In the example below, a Note-On message is delayed slightly in order to give a priority to sending an
F8H.

F8 F8 F8 F8 F8 F8

F8 F8 F8 F8 F8 F8

F8

F8

MIDI In

MIDI Out

Note On

Note On

In order to avoid displacing clock messages in time, in addition to reversing their order with a voice
message (as shown above), they may be also be inserted between the bytes of voice, common, or other
messages. At no time should either an incoming clock byte or any voice message be dropped, but their
order can be changed to accommodate the need for accurate timing.

A sequencer may continue sending timing clock (F8H) while it is stopped. The advantage of this is that a
slaved device can know the starting tempo of a sequence just as the Start command is received.

PRIORITY OF COMMANDS

Redundant commands, such as receiving a Stop command while already stopped, or a Start or Continue
command while already playing, should simply be ignored.

If a clock based device receives commands both from its front panel and via its MIDI In, priority should
be given to the most recently received command. However, it is also acceptable for a device to ignore
either its front panel or incoming Real Time commands depending on its current operating mode. For
example, a device set to respond to incoming MIDI clocks and Real Time commands may ignore the
commands received from its front panel. It may also ignore incoming Real Time commands while set to
operate with its internal clock.

ACTIVE SENSING

Use of Active Sensing is optional for either receivers or transmitters. This byte (FE) is sent every 300 ms
(maximum) whenever there is no other MIDI data being transmitted. If a device never receives Active
Sensing it should operate normally. However, once the receiver recognizes Active Sensing (FE), it then
will expect to get a message of some kind every 300 milliseconds. If no messages are received within this
time period the receiver will assume the MIDI cable has been disconnected for some reason and should
turn off all voices and return to normal operation. It is recommended that transmitters transmit Active
Sensing within 270ms and receivers judge at over 330ms leaving a margin of roughly 10%.

MIDI 1.0 Detailed Specification 4.2 33

The following flowchart shows the correct method of implementing Active Sensing:

MIDI
Reception
Interrupt

Receive Data

Clear Timer

Set Flag

FE
To
Other
Operaton

Increment
Timer

Turn All
Notes Off

Reset Flag

Flag 0

 300 ms

> 300 ms

Exit

Exit

Exit
Exit

Timer
Interrupt

FE ≠
_<

SYSTEM RESET

System Reset commands all devices in a system to return to their initialized, power-up condition. This
message should be used sparingly, and should typically be sent by manual control only. It should not be
sent automatically upon power-up and under no condition should this message be echoed.

If System Reset is recognized, the following operations should be carried out:

 1) Set Omni On, Poly mode (if implemented)
 2) Set Local On
 3) Turn Voices Off
 4) Reset all controllers
 4) Set Song Position to 0
 5) Stop playback
 6) Clear Running Status
 7) Reset the instrument to its power-up condition

34 System Exclusive Messages

SYSTEM EXCLUSIVE MESSAGES

 System Exclusive F0H

System messages are not assigned to any particular MIDI channel. Thus, they will be recognized by
MIDI receivers regardless of the basic channel to which they are set. System Exclusive messages,
however, have a different purpose. Each instrument's System Exclusive messages (hereafter abbreviated
as "Exclusive" messages) have their own special format according to an assigned manufacturer's ID
number.

Exclusive messages are used to send data such as patch parameters, sampler data, or a sequencer
memory bulk dump. A format which is appropriate to the particular type of transmitter and receiver is
required. For example, an Exclusive message which sets the feedback level for an operator in an FM
digital synthesizer will have no corresponding or meaningful function in an analog synthesizer.

Since the purpose of MIDI is to connect many kinds of musical instruments and peripheral equipment, it
is best not to use Exclusive messages to convey real-time performance information (with the exception of
special Universal messages described below). Performance information is best sent via Channel Voice
messages in real time. Receivers should ignore non-universal Exclusive messages with ID numbers that
do not correspond to their own ID.

To avoid conflicts with non-compatible Exclusive messages, a specific ID number is granted to
manufacturers of MIDI instruments by the MMA or JMSC. By agreement between the MMA and JMSC
when an ID number is given, the Exclusive format which is used under that ID number must be
published within one year. "Published", in this context, means not only utilizing the format, but also
printing the information in the product's owner's manual and/or technical materials published by the
manufacturer. This is consistent with one of the fundamental purposes of MIDI, which is to publicize
information and foster compatibility.

Any manufacturer of MIDI hardware or software may use the system exclusive codes of any existing
product without the permission of the original manufacturer. However, they may not modify or extend it
in any way that conflicts with the original specification published by the designer. Once published, an
Exclusive format is treated like any other part of the instruments MIDI implementation — so long as
the new instrument remains within the definitions of the published specification.

Once an Exclusive format has been published, it should not be changed with the exception of bug fixes.
If a new System Exclusive format is released, it should be published in the same manner as the first
version.

DISTRIBUTION OF ID NUMBERS

American European Japanese Other Special
1 byte ID: 01 - 1F 20 - 3F 40 - 5F 60 - 7C 7D - 7F
3 byte ID: 00 00 01 00 20 00 00 40 00 00 60 00
 00 1F 7F 00 3F 7F 00 5F 7F 00 7F 7F

00 and 00 00 00 are not to be used. Special ID 7D is reserved for non-commercial use (e.g. schools,
research, etc.) and is not to be used on any product released to the public. Since Non-Commercial codes
would not be seen or used by an ordinary user, there is no standard format. Special IDs 7E and 7F are
the Universal System Exclusive IDs..

MIDI 1.0 Detailed Specification 4.2 35

UNIVERSAL SYSTEM EXCLUSIVE

System Exclusive ID numbers 7E (Non-Real Time) and 7F (Real Time) are Universal Exclusive IDs,
used for extensions to the MIDI specification. The standardized format for both Real Time and Non-Real
Time Universal Exclusive messages is as follows:

 F0H <ID number> <device ID> <sub-ID#1> <sub-ID#2> . . . F7H

The <device ID> and <sub-ID#1> <sub-ID#2> fields are described in context below. A complete
listing of the assigned Real time and Non-Real Time messages is given in TABLE VIIa.

DEVICE ID

Since System Exclusive messages are not assigned to a MIDI Channel, the Device ID (formerly referred
to as the "channel" byte) is intended to indicate which device in the system is supposed to respond. The
device ID 7F, sometimes referred to as the ‘all call’ device ID, is used to indicate that all devices should
respond.

In most cases, the Device ID should refer to the physical device being addressed (the "hunk of metal and
plastic" is a common term that has been used), as opposed to having the same meaning as channel or
referring to a virtual device inside a physical device. For reference, this also corresponds to old USI
discussions that included a "Unit ID" that was supposed to be attached to one UART and set of in/out
ports.

However, there are exceptions - for example, what Device ID to use for a dual-transport tape deck and
MMC commands? Some may feel more comfortable thinking of the Device ID as an "address" and allow
for the possibility that a single physical unit may be powerful enough to have more than one valid
address. (This also has more relevance as devices move from stand-alone units to cards in a computer.)

Therefore, Device ID is meant to refer to a single physical device or I/O port as a default. Sophisticated
devices - such as multi-transport tape decks, computers with card slots, or even networks of devices -
may have more than one Device ID, and such occurrences should be explained to the user clearly in the
manual. From one to sixteen virtual devices may be accessed at each Device ID by use of the normal
MIDI channel numbers, depending on the capabilities of the device.

SAMPLE DUMP STANDARD

A standard has been developed for sampler data dumps. It has been designed to work as an open or
closed loop system. The closed loop system implements handshaking to improve speed and error
recovery. This also accommodates machines that may need more time to process incoming data. The
open loop system may be desired by those wishing to implement a simplified version with no
handshaking.

Five of the basic messages are generic handshaking messages (ACK, NAK, Wait, Cancel & EOF), which
are also used in other applications – for example File Dump. The remaining messages are Dump
Request, Dump Header, Data Packets, and a Sample Dump Extensions message. The data formats are
given in hexadecimal.

36 System Exclusive Messages

GENERIC HANDSHAKING MESSAGES

ACK:

 F0 7E <device ID> 7F pp F7

 pp Packet number

This is the first handshaking flag. It means "Last data packet was received correctly. Start sending
the next one." The packet number represents the packet being acknowledged as correct.

NAK:

 F0 7E <device ID> 7E pp F7

 pp Packet number

This is the second handshaking flag. It means "Last data packet was received incorrectly. Please re-
send." The packet number represents the packet being rejected.

CANCEL:

 F0 7E <device ID> 7D pp F7

 pp Packet number

This is the third handshaking flag. It means "Abort dump." The packet number represents the
packet on which the abort takes place.

WAIT:

 F0 7E <device ID> 7C pp F7

 pp Packet number

This is the fourth handshaking flag. It means "Do not send any more packets until told to do
otherwise." This is important for systems in which the receiver (such as a computer) may need to
perform other operations (such as disk access) before receiving the remainder of the dump. An ACK
will continue the dump while a Cancel will abort the dump.

EOF:

 F0 7E <device ID> 7B pp F7

 pp packet number (ignored)

This is a new generic handshaking flag which was added for the File Dump extension, and is
described fully under the File Dump heading.

MIDI 1.0 Detailed Specification 4.2 37

DUMP HEADER

 F0 7E <device ID> 01 ss ss ee ff ff ff gg gg gg hh hh hh ii ii ii jj F7

 ss ss Sample number (LSB first)
 ee Sample format (# of significant bits from 8-28)
 ff ff ff Sample period (1/sample rate) in nanoseconds (LSB first)
 gg gg gg Sample length in words (LSB first)
 hh hh hh Sustain loop start point word number (LSB first)
 ii ii ii Sustain loop end point word number (LSB first)
 jj Loop type (00 = forward only, 01 = backward/forward, 7F = Loop off)

DUMP REQUEST

 F0 7E <device ID> 03 ss ss F7

 ss ss Requested sample, LSB first

Upon receiving this message, the sampler should check to see if the requested sample number falls in a
legal range. If it is, the requested sample becomes the current sound number and is dumped to the
requesting master following the procedure outlined below. If it is not within a legal range, the message
should be ignored.

DATA PACKET

 F0 7E <device ID> 02 kk <120 bytes> ll F7

 kk Running packet count (0-127)
 ll Checksum (XOR of 7E <device ID> 02 kk <120 bytes>)

The total size of a data packet is 127 bytes. This is to prevent MIDI input buffer overflow in machines
that may want to receive an entire message before processing it. 128 bytes, or 1/2 page of memory, is
considered the smallest reasonable buffer for modern MIDI instruments.

SAMPLE DUMP EXTENSIONS

All future extensions to the Sample Dump Standard will appear under the Sub-ID#1 (05) of the
Universal System Exclusive Non-Real Time message.

MULTIPLE LOOP POINT MESSAGES:

These messages were added as an extension to the Sample Dump Standard, allowing for the
definition of up to 16,383 pairs of loop points per sample. This cures the shortcoming of the Sample
Dump Standard allowing only 1 pair of loop points to be defined per sample. It also allows
modification of loop points without also having to send the sample itself.

The formats of these messages are as follows:

38 System Exclusive Messages

 Loop Point Transmission (17 bytes):

 F0 7E <device ID> 05 01 ss ss bb bb cc dd dd dd ee ee ee F7

 F0 7E <device ID> Universal System Exclusive Non-Real Time header
 05 Sample Dump Extensions (sub-ID#1)
 01 Multiple Loop messages (sub-ID#2)
 ss ss Sample Number (LSB first)
 bb bb Loop number (LSB first; 7F 7F = delete all loops)
 cc Loop type
 00 = Forwards Only (unidirectional)
 01 = Backwards/Forwards (bi-directional)
 7F = Off
 dd dd dd Loop start address (in samples; LSB first)
 ee ee ee Loop end address (in samples; LSB first)
 F7 EOX

 Loop Points Request (10 bytes):

 F0 7E <device ID> 05 02 ss ss bb bb F7

 F0 7E <device ID> Universal System Exclusive Non-Real Time Header
 05 Sample Dump Extensions (sub-ID#1)
 02 Loop Points Request (sub-ID#2)
 ss ss Sample Number (LSB first)
 bb bb Loop Number (LSB first; 7F 7F = request all loops)
 F7 EOX

One message is sent and one loop affected per loop request or transmission, with the obvious
exceptions of 'Delete All Loops' and 'Request All Loops'. If a Loop Message is sent with the same
number as an existing loop, the new information replaces the old. Loop number 00 00 is the same as
the sustain loop defined in the Sample Dump Standard.

MIDI 1.0 Detailed Specification 4.2 39

SAMPLE DUMP TRANSMISSION SCENARIO

Once a dump has been requested either from the front panel or over MIDI, the dump header is sent.
After sending the header, the master must time out for at least two seconds, allowing the receiver to
decide if it will accept the dump (enough memory, etc.). If the master receives a Cancel, it should abort
the dump immediately. If it receives an ACK, it will start sending data packets. If it receives a Wait, it
will pause indefinitely until another message is received. If nothing is received within the time-out, the
master will assume an open loop and begin sending packets.

A data packet consists of its own header, a packet number, 120 data bytes, a checksum, and an End Of
Exclusive (EOX). The packet number starts at 00 and increments with each new packet, resetting to 00
after it reaches 7FH. This is used by the receiver to distinguish between a new data packet and one
being resent. This number is followed by 120 bytes of data which form 30, 40 or 60 words (MSB first)
depending on the sample format.

Each data byte consists of 7 bits. If the sample format is 8-14 bit, two bytes form a word. Sample formats
of 15-21 bits require three bytes/word (yielding 40 words/packet). Sample formats of 22-28 bits require
four bytes/word (yielding 30 words/packet). Information is left-justified within the 7-bit bytes and
unused bits are filled in with zeros. For example, the sample word FFFH would be sent as 01111111B
01111100B. The word FFFH represent a full positive value (000H represents full negative). The
checksum is the XOR of 7E <device ID> 02 <packet number> <120 bytes>.

When a sampler is receiving a data dump, it should keep a running checksum during reception. If the
checksums match, it sends an ACK and wait for the next packet. If the checksums do not match, it sends
a NAK and waits for the next packet. If the next packet number does not match the previous one and the
sampler has no facility for receiving packets out of sequence, it should ignore the error and continue as if
the checksum had matched.

When a sampler is sending a data dump, it should send a packet and watch its MIDI In port. If an ACK
is received, it sends the next packet. If a NAK is received and the packet number matches that of the
previous packet, it re-sends that packet. If the packet numbers do not match and the sampler has no
facility to send packets out of sequence, it should ignore the NAK. If a Wait is received, the sampler
should watch its MIDI IN port indefinitely for another message and process it like a normal ACK, NAK,
Cancel, or illegal message (which would usually abort the dump). If nothing is received within 20ms, the
sampler can assume an open loop and send the next packet.

The packet numbers are included in the handshaking flags (ACK, NAK, Cancel, Wait) in order to
accommodate future machines that might have the intelligence to re-transmit specific packets out of
sequence (i.e. after subsequent packets have been received).

This process continues until there are less than 121 bytes to send. The final data packet will still consist
of 120 data bytes regardless of how many significant bytes actually remain. The unused bytes will be
filled out with zeros. The receiver should receive and handshake on the last packet. If the receiver's
memory becomes full, it should send a Cancel to the master.

40 System Exclusive Messages

DEVICE INQUIRY

The following two messages are used for device identification, and are categorized as Non-Real Time
System Exclusive General Information messages (sub-ID#1 = 06).

The format of the inquiry message is as follows:

 F0 7E <device ID> 06 01 F7

 F0 7E <device ID> Universal System Exclusive Non-real time header
 06 General Information (sub-ID#1)
 01 Identity Request (sub-ID#2)
 F7 EOX

A device which receives the above message would respond as follows:

(Note that if <device ID> = 7FH then the device should respond regardless of what <device ID> it is
set to.)

 F0 7E <device ID> 06 02 mm ff ff dd dd ss ss ss ss F7

 F0 7E <device ID> Universal System Exclusive Non-real time header
 06 General Information (sub-ID#1)
 02 Identity Reply (sub-ID#2)
 mm Manufacturers System Exclusive id code
 ff ff Device family code (14 bits, LSB first)
 dd dd Device family member code (14 bits, LSB first)
 ss ss ss ss Software revision level. Format device specific
 F7 EOX

Note that if the manufacturers id code (mm) begins with 00H then the above message is extended by two
bytes to handle the additional manufacturers id code.

MIDI 1.0 Detailed Specification 4.2 41

FILE DUMP

File Dump provides a protocol for transmitting files from one computer to another using MIDI. There
are two primary motivations for this protocol: transmitting MIDI Files (especially tempo maps) between
computers and small ROM/microcomputer-based “boxes”; and transmitting files of any type, including
MIDI files, between two computers of different types. The filename is sent with the file, so that several
files may be sent one after another with as little user interaction as necessary.

All File Dump messages are Exclusive Non-Real Time messages (sub-ID#1 = 07), and begin with the
following header:

 F0 7E <device ID> 07 <sub-ID#2> ss ...

 <device ID> device ID of message destination (7F is also acceptable here)
 07 File Dump (sub-ID#1)
 <sub-ID#2> file dump message type:
 01 Header
 02 Data Packet
 03 Request
 ss device ID of message source (7F “all-call” is NOT acceptable here)

The source device ID is included so that it may be used by the receiver of this message in all packets
which it sends back to the sender of this message. In other words, if the handshake of this transfer is
between device A and device B, all messages going from A to B specify B as the destination of the
message, and all messages going back from B to A specify A as the destination of the message. In order
to do this, the first message to B must also specify A as the source of the first message, so that B knows
the device ID of who to respond to for all response messages.

REQUEST

 F0 7E <device ID> 07 03 ss <type> <NAME> F7

 <device ID> device ID of request destination (will become file sender)
 ss device ID of requester (will become file receiver)
 <type> four 7-bit ASCII bytes: type of file
 <NAME> filename: 7-bit ASCII bytes terminated by the message’s F7

<type> describes what type of file, in a general sense, is being requested. Only the types shown below
should be used; you should only use any other type if you know that the receiver will recognize it. If the
device receiving a request doesn’t support the requested type, it should send the Cancel message
described below.

 Recommended
<type> DOS Extension Description
MIDI MID It’s a MIDI File
MIEX MEX It’s a MIDIEX File
ESEQ ESQ It’s an ESEQ File
TEXT TXT It’s a 7-bit ASCII Text File
BIN<space> BIN It’s a binary file (such as any MS-DOS file)
MAC<space> MAC It’s a Macintosh file (with MacBinary header)

If <type> is MAC, this means a Macintosh file is being requested. Because Macintosh files contain two
“forks,” and other important Finder information, they are sent as their MacBinary image. Note that
programs wishing to transmit only MIDI Files, even on the Macintosh, won’t need to worry about

42 System Exclusive Messages

MacBinary, because MIDI Files must always use the MIDI designation to be universally recognized as
MIDI Files.

The filename may be any length, and may be omitted entirely. If it is omitted, it means “whatever is
currently loaded.” The filename may contain only printable ASCII characters (20H through 7EH).
Colons and backslashes may optionally be interpreted as path specifiers: these characters should be
avoided in filenames if this behavior is not desired by the user. If the device receiving the request
message does not have a file system, it should send whatever is currently loaded, using a null filename.

If the device receiving the request message is a computer, it should initiate a transfer if it recognizes the
filename, or if there is no filename but there is a “currently loaded” file. If these conditions aren’t met, it
may either prompt the user for a valid filename (displaying the filename supplied in the dump message),
or just send the Cancel message back to the requester. If the user is to be prompted, the Wait message
should be sent to the requester so that it knows that it may be awhile before the transfer is initiated or a
Cancel is to be sent.

HEADER

 F0 7E <device ID> 07 01 ss <type> <length> <NAME> F7

 <device ID> device ID of requester/receiver
 ss device ID of sender
 <type> four 7-bit ASCII bytes: type of file
 <length> four 7-bit bytes: actual (un-encoded) file length, LSB first
 <NAME> filename: 7-bit ASCII bytes terminated by the message’s F7

<type> and <NAME> are exactly as described in the Dump Request message.

If the length of the file is not known (because it will be converted on the fly), zero may be sent as the
length.

If the sender is a small ROM-based “box” without files, it need not send a filename. If it is a computer,
and there is a filename associated with it, it should be sent in the header. As described above, it may be
any length, must only contain printable ASCII characters, and may contain path description characters.
For maximum compatibility, no path information should be sent. DOS-like machines should send the file
extension as part of the name, separated by a period, with no trailing spaces before the period.

If the receiver is a computer, and if the program running supports receiving files, it should modify the
filename if necessary to make it appropriate for its file system. For instance, if it is a DOS machine, and
the given filename contains a period, it should interpret everything after the period as the file’s
extension. If there is no period, it should use the appropriate extension listed above. If it is running
interactively, it should prompt the user with the filename supplied in the dump message, so that the
user can modify it if desired, if no name is sent, or if a file by that name already exists. If the user is to
be prompted, the Wait message should be sent to the sender so that it knows that it may be awhile
before the transfer is continued or a Cancel is sent.

If the receiver is a small ROM-based “box” without files, or a program on a computer which only expects
this protocol to replace the file currently in memory, it should simply ignore the filename and replace its
current memory contents with the contents of the transmitted file, if the file is a supported type.

DATA PACKET

 F0 7E <device ID> 07 02 <packet #> <byte count> <data> <chksm> F7

 <device ID> device ID of receiver

MIDI 1.0 Detailed Specification 4.2 43

 <packet #> one-byte packet count
 <byte count> one-byte packet size: number of encoded data bytes
 minus one
 <data> the data, encoded as described below
 <chksm> one-byte checksum (XOR of all bytes which
 follow F0 up to the checksum byte, similar to
 sample dump)

The total size of a data packet may be slightly larger than for sample dump: 137 bytes maximum.
The packet number starts at 00 and increments with each new packet, resetting to 00 after it reaches
7FH. This is used by the receiver to detect missed packets. The byte count is the number of encoded data
bytes minus one: for example, 64 stored bytes of the file are encoded in 74 transmitted bytes (as
described below): the byte count would be 73. (Subtracting one allows sending 128 transmitted data
bytes: one would never need to send zero bytes).

Instead of nibblizing, which would double transmission time, the data is “7-bit-ized” so that the
transmission time is more like 12% more than sending it as 8-bit (which isn’t possible over MIDI). Each
group of seven stored bytes is transmitted as eight bytes. First, the sign bits of the seven bytes are sent,
followed by the low-order 7 bits of each byte. (The reasoning is that this would make the auxiliary bytes
appear in every 8th byte without exception, which would therefore be slightly easier for the receiver to
decode.) The seven bytes:

 AAAAaaaa BBBBbbbb CCCCcccc DDDDdddd EEEEeeee FFFFffff GGGGgggg

are sent as:

 0ABCDEFG
 0AAAaaaa 0BBBbbbb 0CCCcccc 0DDDdddd 0EEEeeee 0FFFffff 0GGGgggg

From a buffer to be encoded, complete groups of seven bytes are encoded into groups of eight bytes. If the
buffer size is not a multiple of seven, there will be some number of bytes left over after the groups of
seven are encoded. This short group is transmitted similarly, with the sign bits occupying the most
significant bits of the first transmitted byte. For example:

 AAAAaaaa BBBBbbbb CCCCcccc

are transmitted as:

 0ABC0000 0AAAaaaa 0BBBbbbb 0CCCcccc

Since the maximum packet size is 128 transmitted bytes, this corresponds to sixteen groups of seven
bytes, or 112 stored bytes.

44 System Exclusive Messages

HANDSHAKING FLAGS

For handshaking messages, the same generic set originally created for Sample Dump Standard – plus a
new EOF message – are to be used (Non-Real Time sub-ID#1 = 7B-7F). Since these first four message
were explained in the Sample Dump section, only newly significant information will be presented here.

 F0 7E <device ID> <sub-ID#1> pp F7

 <device ID> device ID of packet sender (message destination)
 <sub-ID#1> handshake message:
 7B End of File
 7C Wait
 7D Cancel
 7E NAK
 7F ACK
 pp packet number

NAK:

 F0 7E <device ID> 7E pp F7

 <device ID> device ID of packet sender (ACK receiver)
 pp packet number

This should be sent whenever the length of a message was wrong, or the checksum was incorrect.
After receiving a NAK, the sender should resend the packet. After sending a NAK, the receiver
should expect the same packet to be resent. If the same packet has an error three consecutive times,
a Cancel should be sent instead of a NAK. If the packet number was wrong, such as if a packet (or a
NAK) was missed, the Cancel message should be sent instead of a NAK.

ACK:

 F0 7E <device ID> 7F pp F7

 <device ID> device ID of packet sender (ACK receiver)
 pp packet number

The packet number represents the packet being acknowledged as correct. The packet number in the
ACK responding to the Header is undefined.

WAIT:

 F0 7E <device ID> 7C pp F7

 <device ID> device ID of Wait receiver
 pp packet number (ignored)

This handshaking flag is used after receiving a File Header, Data Packet, or File Dump Request.
When responding to a Header it means “Do not send data packets until you receive an ACK (or a
Cancel).” When responding to a data packet, it means “Do not send any more packets until you
receive an ACK or NAK (or a Cancel).” When used in response to a File Dump Request, it means
“Your File Header (or a Cancel) will follow soon – be patient.”

MIDI 1.0 Detailed Specification 4.2 45

This message is important for systems in which the receiver may need to perform other operations,
such as disk access or prompting the user, before processing the remainder of the dump. A slow
device may in fact wish to transmit a Wait every time it receives a File Header, Data Packet, or File
Dump Request, thus giving itself unlimited time in which to digest the received data and respond
appropriately.

CANCEL:

 F0 7E <device ID> 7D pp F7

 <device ID> device ID of Cancel receiver
 pp packet number (ignored)

This handshaking flag may be used at any time. It means “Abort dump.” The packet number
represents the packet on which the abort takes place, but is ignored by the receiver. This may be
sent by either the sender or receiver when any error is detected, such as incorrect packet numbers in
a data packet or a handshake message; or when a dump is canceled by the user. If the sender aborts
a transmission, it should use the receiver’s device ID in the Cancel message (which it put in the
header (<device ID>) in the first place). If the receiver aborts a transmission, it should use the
sender’s device ID in the Cancel message (which the sender put in the header (ss)).ACK

END OF FILE (EOF):

F0 7E <device ID> 7B pp F7

 <device ID> device ID of receiver
 pp packet number (ignored)

This is the fifth generic handshaking flag within MIDI, sub-ID#1 (7B). After sending the last packet
of a lengthy message (such as File Dump), the sender must send an EOF message to inform the
receiver that the entire file has been sent. This is critical if the length in the File Dump Header is 0
(which means that the file length is unknown), because this is the only way the receiver can know
the transmission is complete and correct. This message must be sent even if the correct length is
known at the beginning. EOF requires no response from the receiver.

FILE DUMP TRANSMISSION SCENARIO

The File Dump Request is optional. A device may request a file (or memory contents), using the Request
message, or a user may initiate a file dump without a request message being sent. Within 200 msec after
receiving the Request message EOX (F7), the sender must respond with a File Dump header, Wait, or
Cancel. If it responds with Wait, it may send a File Dump header or a Cancel message whenever it’s
good and ready.

The sender then sends a File Dump header message. Within 200 msec after receiving the Header EOX
(F7), the receiver must respond with ACK, Wait, or Cancel. If it responds with Wait, it may send an
ACK or a Cancel message whenever it’s good and ready. If the sender does not receive any message
during this time, it assumes open loop transmission, and proceeds as if an ACK had been received.

The sender then sends a data packet. As the receiver receives the data packet, it keeps a running
checksum. If the checksums match, and it can deal with the data immediately, it sends an ACK and
waits for the next packet. If it needs more than 50 msec to store the data, it sends a Wait message.
(After storing the data, it then sends an ACK to continue the process). If the checksums do not match, or
if the length is wrong, it sends a NAK and waits for the same packet to be resent. If the packet number
is not the one it was expecting, it sends a Cancel message and ignores all further data packets until a

46 System Exclusive Messages

new header is sent (in the open-loop case, the sender won’t ever receive a Cancel message). If the
receiver’s memory ever becomes full, even during the last packet, it should send a Cancel to the sender.

When a device is sending a data dump, it should send a packet and watch its MIDI IN port. If an ACK is
received, it should send the next packet immediately. If a NAK is received and the packet number
matches that of the previous packet, it re-sends that packet. If the packet number of an ACK or a NAK
do not match the number of the packet just sent, the sender should send a Cancel message, and abort
the transmission. If a Wait is received, it should watch its MIDI IN port indefinitely for another
message. If it receives an ACK or NAK, it should process it normally, and continue; if it receives a
Cancel or an illegal message, it should abort the dump process. If nothing is received in 50 msec after a
data packet or 200 msec after a header, it can assume an open loop and send the next packet.

After the receiver ACKs the last packet, the sender transmits an EOF. No ACK is required for this
message. The file dump is then complete.

Any packet may contain any number of bytes, up to 128 encoded data bytes. Most devices probably will
transmit several packets of equal size, and send what’s left over as a final packet. However, the receiver
should never make any assumption about packet size.

MIDI 1.0 Detailed Specification 4.2 47

MIDI TUNING

This is an addition to the MIDI specification which allows the sharing of “microtunings” (user-defined
scales other than 12-tone equal temperament) among instruments of different manufacture, and the
switching of these tunings during real-time performance.

The messages include:

 – bulk tuning dump request (non-real-time)
 – bulk tuning dump (non-real-time)
 – single-note tuning change (real-time)

Even though the first two messages are in the Universal Non-Real Time area and the last in the Real
Time area, they keep the same sub-IDs to more obviously group them and possibly ease the parsing of
them. Single Note Retuning is a part of the proposal which allows retuning of individual MIDI note
numbers to new frequencies in real time as a performance control.

The standard does not attempt to dictate how a manufacturer implements microtuning, but provides a
general means of sharing tuning data among different instruments.

This goal does require shared assumptions which have some architectural implications. The standard
requires that any of the 128 defined MIDI key numbers (or at least those MIDI key numbers covered by
the instrument’s playable range) be tunable to any frequency within the proposed frequency range. The
standard also strongly suggests, but does not enforce, an exponential (constant cents) rather than linear
(constant Hertz) tuning resolution across the instrument’s frequency range.

The standard permits the changing of tunings in real-time, both by the selection of presets and on a per-
note basis. When a sounding note is affected by either real-time tuning message, the note should
instantly be re-tuned to the new frequency while it continues to sound; this change should occur without
glitching, forced Note-Offs, re-triggering or other audible artifacts (see section 4, “Additional”).

The standard provides for 128 tuning memory locations (programs). As with the MIDI program change
message, this is a maximum value. An instrument supporting the standard may have any lesser number
of tuning programs. The standard requires only that all existing tuning programs respond to the
messages as specified (See section 3, “Continuous Controller Messages”).

Although directly applicable to some existing instruments, the standard attempts to define a coherent
framework within which the designers of future instruments can profitably work. It is hoped that by
providing this framework the standard will make microtunability more easily implemented and more
common on MIDI instruments.

FREQUENCY DATA FORMAT

The frequency resolution of the standard should be stringent enough to satisfy most demands of music
and experimentation. The standard provides resolution somewhat finer than one-hundredth of a cent.
Instruments may support the standard without necessarily providing this resolution in their hardware;
the standard simply permits the transfer of tuning data at any resolution up to this limit.

Frequency data shall be sent via system exclusive messages. Because system exclusive data bytes have
their high bit set low, containing 7 bits of data, a 3-byte (21-bit) frequency data word is used for
specifying a frequency with the suggested resolution. An instrument which does not support the full
suggested resolution may discard any unneeded lower bits on reception, but it is preferred where
possible that full resolution be stored internally, for possible transmission to other instruments which
can use the increased resolution.

48 System Exclusive Messages

Frequency data shall be defined in units which are fractions of a semitone. The frequency range starts at
MIDI note 0, C = 8.1758 Hz, and extends above MIDI note 127, G = 12543.875 Hz. The first byte of the
frequency data word specifies the nearest equal-tempered semitone below the frequency. The next two
bytes (14 bits) specify the fraction of 100 cents above the semitone at which the frequency lies. Effective
resolution = 100 cents / 214 = .0061 cents.

One of these values (7F 7F 7F) is reserved to indicate not frequency data but a “no change” condition.
When an instrument receives these bytes as frequency data, it should make no change to its stored
frequency data for that MIDI key number. This is to prevent instruments which do not use the full range
of 128 MIDI key numbers from sending erroneous tuning data to instrument which do use the full range.
The three-byte frequency representation may be interpreted as follows:

 0xxxxxxx 0abcdefg 0hijklmn

 xxxxxxx = semitone
 abcdefghijklmn = fraction of semitone, in .0061-cent units

Examples of frequency data:

 00 00 00 = 8.1758 Hz (C – normal tuning of MIDI key no. 0)
 00 00 01 = 8.2104 Hz
 01 00 00 = 8.6620 Hz
 0C 00 00 = 16.3516 Hz
 3C 00 00 = 261.6256 Hz (middle C)
 3D 00 00 = 277.1827 Hz (C# – normal tuning of MIDI key no. 61)
 42 7F 7F = 439.9984 Hz
 43 00 00 = 440.0000 Hz (A-440)
 43 00 01 = 440.0016 Hz
 78 00 00 = 8372.0190 Hz (C – normal tuning of MIDI key no. 120)
 78 00 01 = 8372.0630 Hz
 7F 00 00 = 12543.8800 Hz (G – normal tuning of MIDI key no. 127)
 7F 00 01 = 12543.9200 Hz
 7F 7F 7E = 13289.7300 Hz (top of range)
 7F 7F 7F = no change (reserved)

BULK TUNING DUMP REQUEST

A bulk tuning dump request is as follows:

 F0 7E <device ID> 08 00 tt F7

 F0 7E Universal Non-Real Time SysEx header
 <device ID> ID of target device
 08 sub-ID#1 = MIDI Tuning Standard
 00 sub-ID#2 = 00H, bulk dump request)
 tt tuning program number (0 – 127)
 F7 EOX

The receiving instrument shall respond by sending the bulk tuning dump message described in the
following section for the tuning number addressed.

BULK TUNING DUMP

MIDI 1.0 Detailed Specification 4.2 49

A bulk tuning dump comprises frequency data in the 3-byte format outlined in section 1, for all 128
MIDI key numbers, in order from note 0 (earliest sent) to note 127 (latest sent), enclosed by a system
exclusive header and tail. This message is sent by the receiving instrument in response to a tuning
dump request.

 F0 7E <device ID> 08 01 tt <tuning name> [xx yy zz] ... chksum F7

 F0 7E Universal Non-Real Time SysEx header
 <device ID> ID of responding device
 08 sub-ID#1 = MIDI Tuning Standard
 01 sub-ID#2 = 01H, bulk dump reply)
 tt tuning program number (0 – 127)
 <tuning name> 16 ASCII characters
 [xx yy zz] frequency data for one note (repeated 128 times)
 chksum checksum (XOR of 7E <device ID> 01 tt <388 bytes>)
 F7 EOX

If an instrument does not use the full range of 128 MIDI key numbers, it may ignore data associated
with un-playable notes on reception, but it is preferred where possible that the full 128-key tuning be
stored internally, for possible transmission to other instruments which can use the increased resolution.
On transmission, it may if necessary pad frequency data associated with un-playable notes with the “no
change” frequency data word defined above. For keys in the instrument’s key range, the pitch that is
sent should be the pitch that key would play if it were received as part of a note-on message. For keys
outside the key range, 7F 7F 7F may be sent.

SINGLE NOTE TUNING CHANGE (REAL-TIME)

The single note tuning change message (Exclusive Real Time sub-ID#1 = 08) permits on-the-fly
adjustments to any tuning stored in the instrument’s memory. These changes should take effect
immediately, and should occur without audible artifacts if any affected notes are sounding when the
message is received.

 F0 7F <device ID> 08 02 tt ll [kk xx yy zz] F7

 F0 7F Universal Real Time SysEx header
 <device ID> ID of target device
 08 sub-ID#1 (MIDI Tuning Standard)
 02 sub-ID#2 (02H, note change)
 tt tuning program number (0 – 127)
 ll number of changes (1 change = 1 set of [kk xx yy zz])
 [kk MIDI key number
 xx yy zz] frequency data for that key (repeated ‘ll’ number of times)
 F7 EOX

This message also permits (but does not require) multiple changes to be embedded in one message, for
the purpose of maximizing bandwidth. The number of changes following is indicated by the byte ll; the
total length of the message equals 8 + (ll x 4) bytes.

If an instrument does not support the full range of 128 MIDI key numbers, it should ignore data
associated with un-playable notes on reception.

50 System Exclusive Messages

This message can be used to make changes in inactive (background) tunings as well. This message may
also, at the discretion of the manufacturer, be transmitted by the instrument under particular
circumstances (for example, while holding down one or more keys and pressing a “send-single-note-
tuning” front panel button).

CHANGING TUNING PROGRAMS

A registered parameter number shall be allotted to select any of the instrument’s stored tunings as the
“current” or active tuning. Instruments which permit the storage of multiple microtunings should
respond to this message by instantly changing the “current” tuning to the specified stored tuning. This
change takes effect immediately and must occur without audible artifacts (notes-off, resets, re-triggers,
glitches, etc.) if any affected notes are sounding when the message is received.

As with the MIDI program change message, no assumptions are made as to the underlying architecture
of the instrument. For instance, in cases where layered or multi-timbral sounds might be assigned to
different tunings, so that more than one tuning might be active, the manufacturer may decide how best
to interpret this message. The basic channel number might prove useful in discriminating between
multiple active tunings, or a certain range of tuning programs might be set aside and defined as active.

The message is sent as a registered parameter number controller message, followed by either a data
entry, data increment, or data decrement controller message, e.g. (with running status shown):

 Bn 64 03 65 00 06 tt (data entry)
 Bn 64 03 65 00 60 7F (data increment)
 Bn 64 03 65 00 61 7F (data decrement)
 n = basic channel number
 tt = Tuning Program number (1-128)

Likewise, a Tuning Bank Change Registered Parameter number is also assigned as follows:

 Bn 64 04 65 00 06 tt (data entry)
 Bn 64 04 65 00 60 7F (data increment)
 Bn 64 04 65 00 61 7F (data decrement)
 n = basic channel number
 tt = Tuning Bank number (1-128)

For maximum flexibility, this Bank Number is kept separate from the normal Program Change Bank
Select (controller #00). However, an instrument may wish to link the two as a feature for the user,
especially if a tuning bank is stored alongside a patch parameter bank (for example, on a RAM
cartridge).

If an instrument receives a Tuning Program or Bank number for which it has no Program or Bank, it
should ignore that message. Standard mappings of “common” tunings to program numbers are not being
proposed at this time.

Additional

There is some question as to whether instantaneous response to real-time tuning changes is desirable in
every circumstance. In some performance situations it makes more sense if a tuning change affect only
those notes which occur subsequent to the change, and not affect sounding notes. But there are also
situations in which tuning changes should take place instantaneously, as specified in the standard, and
should affect sounding notes without disrupting their continuity.

MIDI 1.0 Detailed Specification 4.2 51

If the instrument responds well in the latter situation, some work-around is possible for the former. The
reverse is not true. Therefore the standard requires that tuning changes immediately affect sounding
notes. Manufacturers might, however, consider implementing a switchable “instantaneous/next-note-on”
option within an instrument.

Single Note Retuning is intended for performance. Because of there are two primary concerns: 1) the
RAM required for temporary copies of tuning tables; and 2) the computational load of smoothly updating
the pitch of affected active notes. It is clear that in order to recognize the Single Note Retune message, a
copy of the current Tuning Program needs to be kept in RAM. In a multi-timbral environment there is
potentially a copy for each virtual instrument. A high-end instrument could afford the upwards of 8K of
RAM needed for per-virtual-instrument copies. More modest instruments may choose to only implement
one alterable RAM table and either make it available only to the basic channel virtual instrument or
require that all instruments share the same tuning. Provided that it is explained in the user’s manual,
any of these methods is acceptable.

Additional information on alternate tunings:
The Just Intonation Network
MIDI Tuning Standards Committee
535 Stevenson St.
San Francisco, CA 94103

52 System Exclusive Messages

GENERAL MIDI SYSTEM MESSAGES

There is a defined set of Universal Non-Real Time SysEx messages for General MIDI (sub-ID#1 = 09).
The current messages (below) turn GM mode on/off on a sound module (should it have more than one
mode of operation):

Turn General MIDI System On:

 F0 7E <device ID> 09 01 F7

 F0 7E Universal Non-Real Time SysEx header
 <device ID> ID of target device (suggest using 7F ‘All Call’)
 09 sub-ID#1 = General MIDI message
 01 sub-ID#2 = General MIDI On
 F7 EOX

Turn General MIDI System Off:

 F0 7E <device ID> 09 02 F7

 F0 7E Universal Non-Real Time SysEx header
 <device ID> ID of target device (suggest using 7F ‘All Call’)
 09 sub-ID#1 = General MIDI message
 02 sub-ID#2 = General MIDI Off
 F7 EOX

MIDI 1.0 Detailed Specification 4.2 53

MTC FULL MESSAGE, USER BITS, REAL TIME CUEING

While MTC Quarter Frame messages (System Common) handle the basic running work of the system,
they are not suitable for use when equipment needs to be fast-forwarded or rewound, located or cued to a
specific time, as sending them continuously at accelerated speeds would unnecessarily clog up or outrun
the MIDI data lines. For these cases, MTC Full Messages are used, which encode the complete time into
a single message. After sending a Full Message, the time code generator can pause for any mechanical
devices to shuttle (or "autolocate") to that point, and then resume running by sending quarter frame
messages.

Universal System Exclusive Real Time sub-ID#1 (01) is used for the MTC Full Message, and for defining
MTC User Bits. Real Time sub-ID#1 (05) is used for MIDI Cueing.

See the separate MTC Detailed Specification for complete details.

MIDI SHOW CONTROL

The purpose of MIDI Show Control is to allow MIDI systems to communicate with and to control
dedicated intelligent control equipment in theatrical, live performance, multi-media, audio-visual and
similar environments. Applications may range from a simple interface through which a single lighting
controller can be instructed to GO, STOP or RESUME, to complex communications with large, timed
and synchronized systems utilizing many controllers of all types of performance technology.

MIDI Show Control uses a single Universal System Exclusive Real Time sub-ID#1 (02) for all Show
commands (transmissions from Controller to Controlled Device).

See the separate MSC Detailed Specification for complete details.

54 System Exclusive Messages

NOTATION INFORMATION

Universal System Exclusive Real Time subID#1 (03) is used for communicating musical structure
information in real time.

The messages include Bar Marker, Time Signature (Delayed), and Time Signature (Immediate).

BAR MARKER

The Bar Marker message specifies that the next MIDI clock received is the first clock of a measure, and
thus a new bar.

The message format is as follows:

 F0 7F <device ID> 03 01 aa aa F7

 F0 7F Universal Real Time SysEx Header
 <device ID> ID of target device (default = 7F [all])
 03 sub ID#1 = Notation Information
 01 sub ID#2 = Bar Number Message
 aa aa bar number; lsb first
 [00 40] not running
 [01 40] - [00 00] count-in
 [01 00] - [7E 3F] bar number in song
 [7F 3F] running; bar number unknown
 F7 EOX

The numbering system uses the largest possible negative number as the “not running” flag; count-in
bars are negative numbers until they reach zero, which is the last bar of count-in (systems that have
only 1 bar of count-in don’t have to deal with negative numbers – just count from “zero” on up); bar
numbers then increment through positive numbers, with the highest positive number reserved as
“running, but I don’t know the bar number” (or the bar number has exceeded 8K).

If MIDI clocks (F8s) are also being sent, this bar number takes effect at the next received F8. If MTC but
no MIDI clocks are being sent, this bar number takes effect at the next received F1 xx. It may be
displayed as soon as received (in the event that it was sent while a drum machine or sequencer is
paused, but has located to a new section of the song).

Please note that this message is intended for information and high-level synchronization as opposed to
low-level synchronization, and should not be taken as a substitute for other MIDI timing messages.

The Bar Marker message is critical for other Notation messages (such as Time Signature) which have
the option of taking effect immediately or on the next received Bar Marker message. In the later case,
extra information can be sent at any time during the previous bar without taking effect. This will
minimize clogging by allowing enough room between the last F8/F1 xx of a bar and the first F8/F1 xx of
the next. With the Bar Marker being sent every bar, a receiver does not have to keep track of MIDI
clocks to know exactly where it is.

Therefore, it is strongly suggested that the Bar Number be sent immediately after the last F8 or F1 xx
message of the previous bar, to prevent possible clogging, jitter, and/or message transposition (MIDI
mergers may also want to be sensitive to this message to prevent it getting delayed past a following F8).

TIME SIGNATURE

MIDI 1.0 Detailed Specification 4.2 55

The Signature Messages are used to communicate a new time signature to a receiving device. There are
two forms, Immediate and Delayed. The Immediate form (sub id #2 = 02H [bit 6 = reset]) takes effect
upon receipt (or on the next received MIDI clock if slaved to MIDI sync). The Delayed form (sub-ID#2 =
42H [bit 6 = set]) takes effect upon the receipt of the next Bar Marker message. However, it may be
displayed immediately.

 Time Signature (Immediate):

 F0 7F <device id> 03 02 ln nn dd bb cc bb [nn dd...] F7

 F0 7F Universal Real Time SysEx header
 <device id> ID of target device (default = 7F [all])
 03 sub-ID#1 = Notation Information
 02 sub-ID#2 = Time Signature - Immediate
 ln number of data bytes to follow
 nn number of beats (numerator) of time signature
 dd beat value (denominator) of time signature (negative power of 2)
 cc number of MIDI clocks in a metronome click
 bb number of notated 32nd notes in a MIDI quarter note
 [nn dd...] additional pairs of time signatures to define a compound time
 signature within the same bar.
 F7 EOX

 Time Signature (Delayed):

 F0 7F <device id> 03 42 ln nn dd bb cc bb [nn dd...] F7

 F0 7F Universal Real Time SysEx header
 <device id> ID of target device (default = 7F [all])
 03 sub-ID#1 = Notation Information
 42 sub-ID#2 = Time Signature - Delayed
 ln number of data bytes to follow
 nn number of beats (numerator) of time signature
 dd beat value (denominator) of time signature
 (negative power of 2)
 cc number of MIDI clocks in a metronome click
 bb number of notated 32nd notes in a MIDI quarter note
 [nn dd...] additional pairs of time signatures to define a
 compound time signature within the same bar.
 F7 EOX

The additional data in [nn dd...] must always be in pairs. If there are not additional time signatures
specified, ln (the length of the data) = 4. It is incremented by multiples of 2 for every extra time
signature pair that exists within the bar.

The data format here duplicates that of the Standard MIDI File Time Signature Meta Event (FF 58),
with extra bytes for compound time signatures. The bytes for the compound time signatures were added
at the end so that the current Meta Event could be extended to match the format of this message, while
keeping the leading bytes of the event the same.

56 System Exclusive Messages

The burden is placed on the transmitter to indicate ahead of time what the time signature will be in the
next bar. It is not the responsibility of the receiver to count clocks and decode it. It is intended that
interpretation of the Notation family of messages be made as simple as possible for the receiver so that
devices with displays (which may not be following MIDI clocks) could easily pass useful information to
the user.

MIDI 1.0 Detailed Specification 4.2 57

DEVICE CONTROL

MASTER VOLUME AND MASTER BALANCE

These messages are intended to produce the same effect as volume and balance controls on a stereo
amplifier. They are intended mainly for General MIDI instruments (so that one Master Volume control
can simultaneously fade out all the layers in a sound module, for example), although there may be wider
applications.

Because these messages are intended to address “devices” as opposed to MIDI “channels” they have been
defined as Universal Real Time System Exclusive messages (sub-ID#1 = 04). The corresponding
“channel” messages are the controllers Channel Volume (formerly Main Volume) (CC number 07) and
Balance (CC number 08).

Master Volume:

 F0 7F <device id> 04 01 vv vv F7

 F0 7F <device id> Universal Real Time SysEx header
 04 sub-ID#1 = Device Control
 01 sub-ID#2 = Master Volume
 vv vv Volume (lsb first); 00 00 = volume off
 F7 EOX

Master Balance:

 F0 7F <device id> 04 02 bb bb F7

 F0 7F <device id> Universal Real Time SysEx header
 04 sub-ID#1 = Device Control
 02 sub-ID#2 = Master Balance
 bb bb Balance (lsb first); 00 00 = hard left;
 7F 7F = hard right
 F7 EOX

In order to properly respond to these messages and their channel-aimed counterparts, a device must
internally track three volume and two balance scalars as follows:

1. Received on its own ID (which matches its knob on the front panel; if no knob or if knob is not
scanned then power up default is set at full volume)

2. Received on the ‘All Call’ or ‘broadcast’ ID (7F)

3. Channel messages.

This way, each virtual/channel-based instrument can be individually mixed, then a device could be
individually scaled, and then all devices could be brought down together without forgetting their
individual levels.

58 System Exclusive Messages

MIDI MACHINE CONTROL

MIDI Machine Control is a general purpose protocol which initially allows MIDI systems to
communicate with and to control some of the more traditional audio recording and production systems.
Applications may range from a simple interface through which a single tape recorder can be instructed
to PLAY, STOP, FAST FORWARD or REWIND, to complex communications with large, time code based
and synchronized systems of audio and video recorders, digital recording systems and sequencers.

MIDI Machine Control uses two Universal Real Time System Exclusive messages (sub-ID#1's), one for
Commands (transmissions from Controller to Controlled Device), and one for Responses (transmissions
from Controlled Device to Controller). (sub-ID#1 = 06, 07)

See the separate MMC Detailed Specification for complete details.

MIDI 1.0 Detailed Specification 4.2 A-1

ADDITIONAL EXPLANATIONS AND APPLICATION
NOTES

RUNNING STATUS

Running status is a convenient short cut in transmission of data which saves time and makes it easier to
minimize delays of transmitted MIDI data from the actual performance. With Running Status, after the
first message, additional messages of the same type (i.e. Note On messages on the same MIDI channel)
are sent without repeating the status byte for every message. Receivers must understand that if a data
byte is received as the first byte of a message, the most recent, or "running" status is assumed.

For example, a note is normally played by transmitting a Note On Status Byte (90H) followed by the key
number value (0kkkkkkk) and the velocity value bytes (0vvvvvvv). With Running Status, all additional
notes on the same MIDI channel can be played by simply transmitting the key number and velocity
bytes. As long as all following data consists of Note Ons on the same MIDI channel the Note On status
byte need not be sent again.

Running Status is most useful for Note On and continuous controller messages. As notes can be turned
off by sending a Note On with a velocity value of 0, long strings of note messages can be sent without
sending a Status byte for each message. If the Note Off (8nH) message is used to turn notes off, a status
byte must be sent.

The following is an example of Running Status. On the top is a complete data stream with one Status
Byte for each pair of Data Bytes. Below that is a compressed data stream with only one Status Byte:

90H 3CH 27H 40H 2BH 43H 25H

90H 3CH 27H 90H 40H 2BH 90H 43H 25H

90H 3CH 27H 80H 3CH 40H 90H 3EH 29H

With
Status

With
Running
Status C Note On

(Vel. = 39)
E Note On
(Vel. = 43)

G Note On
(Vel. = 37)

90H 3CH 27H 3CH 00H 3EH 29H
C Note On
(Vel. = 39)

C Note Off
(Vel. = 0)

D Note On
(Vel. = 41)

With
Status

With
Running
Status

While the above examples pertain to Note On messages, Running Status may also be used for all Mode
and Control Change messages. Running Status can drastically reduce the amount of data sent by
Continuous Controllers.

In some cases, the receiver must keep the status byte of the mode messages in a Running Status buffer
even though the mode message is designated for a channel other than the receiver's basic channel. For
example, if an Omni Off mode message is sent followed by Running Status Control Change messages,
the Control Change messages can be properly recognized even though the Omni Off message may have
been ignored.

A-2 Additional Explanations and Application Notes

B0H 7CH 00H 01H 37H
Message:
Omni Off on CH 1 (ignore)

Message:
Controller 1 in CH 1
value 37H (recogniz

B0H Valid
Running Status

Buffer

Running Status Buffer and Response of Receiver to Different Messages
(Basic Channel = 3, Mode: Omni On)

The receiver should always hold the last status byte in a Running Status buffer in case the transmitter
is utilizing Running Status to reduce the number of bytes sent. This also means the receiver has to
determine how many data bytes (one or two) are associated with each message. It is recommended that
the Running Status buffer be set up as follows:

 1. Buffer is cleared at power up.
 2. Buffer stores the status when a channel message is received.
 3. Buffer is cleared when a System Exclusive or Common status message is received.
 4. Nothing is done to the buffer during reception of real time messages.
 5. The data bytes are ignored when the value of the status buffer is 0 (zero).

There are currently two undefined System Common status bytes (F4H and F5H). Should one of these
undefined messages be received, it should be ignored and the running status buffer should be cleared.
There are currently two undefined Real Time status bytes (F9H, FDH). Since these may convey only
timing information, they should always be ignored, and the running status buffer should remain
unaffected.

If Running Status is being used and a receiver is connected to a transmitter after the transmitter has
powered on it will not play until the next Status byte is transmitted. For this reason it is recommended
that the status be refreshed every few seconds.

To Summarize:

A transmitter may or may not be programmed to take advantage of Running Status. Using Running
Status, notes may be turned off by sending a Note On message with zero velocity . It is the responsibility
of the receiver to always recognize both normal and running status modes.

A receiver should take into consideration that a transmitter can send messages in either Running Status
or normal modes. The following flowchart shows an example of an interrupt-driven routine:

MIDI 1.0 Detailed Specification 4.2 A-3

?

?

Store in
Running Status

Buffer

Clear Third
Byte Flag

?

Store it in FIFO

Increment
Pointer + 1

(do not
increment

pointer here)

?

?

?

?

Ignore
Data Byte

Clear Third
Byte Flag

Store Third
Byte into FIFO

Increment
Pointer + 3

?

Clear Running
Status Buffer

?

?
Set Third
Byte Flag

Store Status
into FIFO

Store Data Byte
into FIFO

(do not
increment

pointer here) Ignore Status
Increment

Pointer + 2

Store Data Byte
into FIFO

Store Status
into FIFO

Read Serial Input

Bit 7 = 0 Bit 7 = 1

Third Byte Flag = 1 Yes Is it a
Real-Time
Message?

No

No

Yes

Is this a
Tune Request?

= F6H

Flag = 0
Running Status
Buffer = 0

Buffer
Greater
than 0 Less

than
C0H

Less than E0H

Buffer Less
than F0H

Buffer
Greater
than F0H

Buffer = F2H

Buffer = F3H
or F1H

Buffer >= F0H

Clear Running
Status Buffer

Clear Running
Status Buffer

A-4 Additional Explanations and Application Notes

ASSIGNMENT OF NOTE ON/OFF COMMANDS

If an instrument receives two or more Note On messages with the same key number and MIDI channel,
it must make a determination of how to handle the additional Note Ons. It is up to the receiver as to
whether the same voice or another voice will be sounded, or if the messages will be ignored. The
transmitter, however, must send a corresponding Note Off message for every Note On sent. If the
transmitter were to send only one Note Off message, and if the receiver in fact assigned the two Note
On messages to different voices, then one note would linger. Since there is no harm or negative side
effect in sending redundant Note Off messages this is the recommended practice.

VOICE ASSIGNMENT IN POLY MODE

In Poly mode there are no particular rules which define how to assign voices when more than one Note
On message is received and recognized. If more Note On messages are transmitted than the receiver is
capable of playing, the receiver is free to use any method of dealing with this "overflow" situation (such
as first vs. last note priority). The priority of voice assignments may follow the order in which Note On
messages are received, the receiver's own keyboard control logic, or some other scheme.

When a transmitter sends Note On and Off information to a slave keyboard which is also being played,
it is important for the receiver to distinguish the source of Note On/Off information. For example, a Note
Off received from MIDI should not turn off a note that is being played on the slave keyboard.
Conversely, releasing a key on the slave's keyboard should not turn off a note being received from MIDI.

"ALL NOTES OFF" FUNCTION WHEN SWITCHING MODES

When a receiver is switching between Omni On/Off and Poly or Mono modes, all notes should be turned
off . This is to avoid any unexpected behavior when the instrument's mode is switched. Caution should
be taken to turn off only those note events received from MIDI and not those played on the receiver's
keyboard.

MIDI MERGING AND ALL NOTES OFF

A sequencer replays previously recorded messages and merges them with any messages received at its
MIDI In. A MIDI merging device combines two incoming data streams in real time. In either case the
result is that a single MIDI data stream is communicating information produced by more than one
transmitter. If an All Notes Off messages is passed through either a sequencer or merging device, then
all connected devices will shut off their notes, though the All Notes Off may have only been intended for
the notes turned on by one specific instrument. When an All Notes Off is received by a sequencer it
should check to make sure that it does not conflict with any notes currently being played. Similarly, if an
All Notes Off message is contained in the recorded sequence, it should not be sent if Note On data for
that channel is being received. A MIDI merging device should feature the ability to selectively filter All
Notes Off messages to avoid this problem.

Mode messages with a second byte greater than 124 should be treated in the same way as the All Notes
Off message since they also perform an All Notes Off function.

MIDI 1.0 Detailed Specification 4.2 A-5

THE RELATIONSHIP BETWEEN THE HOLD PEDAL AND "ALL
NOTES OFF"

If Note Off messages are received while the hold pedal (controller 64 (40H)) is 'on' they must be
recognized but not acted upon until the release of the hold pedal. The same is true for the All Notes Off
message. A Hold or Sustain pedal 'On' message takes priority over Note Off and All Notes Off until it is
released.

All Notes Off should force voices to go to the release stage of the envelope, and not terminate the sound
of the notes abruptly.

90 43 40
(G On)

B0 40 7F
(HOLD On)

90 43 00
(G Off)

40 00
(HOLD Off)

B0 7B 00
(All Notes Off)

Sound "envelope" of a note being
created by the receiving instrument

Notes cannot be cleared here by
"All Notes Off", even though Note Off
has been received, since hold is still on.

MIDI Messages Transmitted:

FURTHER DESCRIPTION OF HOLD PEDAL

Hold and Second Release switches use controller number 64 (40H). Proper implementation of the hold
pedal will maintain the envelope's sustain level. A "Hold 2" switch has been defined as controller
number 69 (45H) as a means of implementing all other hold functions (e.g. "freeze" where envelopes etc.
are frozen in their current state) and/or for implementing two different hold functions simultaneously.
"Chord Hold" which holds only the notes held when the foot pedal is switched on, is equivalent to the
Sostenuto controller 66. All notes played after the foot pedal is switched on are performed normally.

PRIORITY OF MIDI RECEIVING

An instrument capable of receiving and processing incoming MIDI data must give priority to its MIDI In
port over its local functions such as the front panel or keyboard. It is critical that incoming data never be
ignored or mishandled due to the processor's attention being elsewhere.

At 31.25 Kbaud, one byte is sent every 320 microseconds, which means that proper handling of the
received data during any long-term or ongoing MIDI communication will require a high speed
microprocessor. For this reason, interrupts and FIFO (first in/first out) buffers are commonly used. As
soon as possible after an interrupt is generated, received data can be stored in a FIFO buffer for
processing later on. This data handling can take much less than 320 µS, allowing time for the
microprocessor to handle other aspects of the instrument's operation.

RELEASE OF OMNI

As a transmitter has no way of knowing what channel a receiver is on it is best to always be able to turn
Omni off by means of front panel controls on an instrument.

A-6 Additional Explanations and Application Notes

BASIC CHANNEL OF A SEQUENCER

To a receiver, the output of a MIDI sequencer is identical to the output of any MIDI transmitter with
the possible exception of added Real Time bytes. A transmitting instrument sends on a particular
channel which a sequencer then records and re-transmits. Thus, a sequencer does not need a Basic
Channel as do other instruments. However, this does not prevent a sequencer from having a Basic
Channel for recognizing mode messages or changing channels.

TRANSPOSING

If key transpose is implemented on a keyboard instrument, the MIDI key number 60 can be assigned to
a physical key other than middle C. Transposition is allowed on both transmitters and receivers. The
transposing system in a device should separately affect the keyboard data and incoming MIDI data
going to the voice module. To avoid confusion it is a good idea to use an indicator to show when key
transpose is active.

MIDI 1.0 Detailed Specification 4.2 A-7

MIDI IMPLEMENTATION CHART INSTRUCTIONS

The standard MIDI Implementation Chart is used as a quick reference of transmitter and receiver
functions so that users can easily recognize what messages and functions are implemented in the
instrument. This chart should be included in the users manual of all MIDI products. For example, if a
user intends to connect two MIDI instruments, they might compare the "Transmitted" part of one
instrument's chart, with the "Recognized" part of the other instrument's chart by overlapping them. For
this reason each chart should be the same size and have the same number of lines.

GENERAL

1. The "[]" brackets at the top of the chart is used for the instrument's name such as, [LINEAR
 WAVETABLE SYNTHESIZER].

2. The item "MODEL" should be used for the model number, such as "LW-1".

3. The body of the implementation chart is divided into four columns. The first column is the
 specific function or item, the next two columns give information on whether the specified
 function is transmitted and/or received, and the fourth column is used for remarks. This last
 column is useful to explain anything unique to this implementation.

FUNCTION DESCRIPTION

1. BASIC CHANNEL:

 Default: Channel which is assigned when power is first applied to unit.
 Changed: The channels which can be assigned from the instrument's front panel.

2. MODE:

 Default: This is the channel mode used by a Transmitter and Receiver when power is
 first applied. This should be written as Mode x (where x is 1 through 4), as shown on
the bottom of sheet.
 Messages: These are the mode messages which can be transmitted or received, such as
 OMNI ON/OFF, MONO ON, and POLY ON. MONO ON and POLY ON may be
 written in the short form "MONO", "POLY".
 Altered: This shows the channel modes which are not implemented by a receiver and
 the modes which are substituted. For example, if the receiver cannot accept "MONO
 ON" mode, but will switch to "OMNI ON" mode in order to receive the MIDI data, the
 following expression should be used: "MONO ON > OMNI ON" or "MONO > OMNI".

3. NOTE NUMBER:

 Note Number: The total range of transmitted or recognized notes.
 True Voice: Range of received note numbers falling within the range of true notes
 produced by the instrument.

A-8 Additional Explanations and Application Notes

4. VELOCITY:

 NOTE ON/NOTE OFF Velocity is assigned either an "o" for implemented or an "x" for not
 implemented. In the space following the "o" or "x" it may be mentioned how the
 Note On or Off data is being transmitted.

5. AFTERTOUCH:

 "o" for implemented or an "x" for not implemented

6. PITCH BEND:

 "o" for implemented or an "x" for not implemented

7. CONTROL CHANGE:

 Space is given in this area for listing of any implemented control numbers. An "o" or "x" should be
 placed in the appropriate Transmitted or Recognized column and the function of the specified
 control number should be listed in the remarks column.

8. PROGRAM CHANGE:

 "o" for implemented or an "x" for not implemented. If implemented, the range of numbers should
 be included.
 True # (Number): The range of the program change numbers which correspond to the
 actual number of patches selected.

9. SYSTEM EXCLUSIVE:

 "o" for implemented or an "x" for not implemented. A full description of the instrument's System
 Exclusive implementation should be included on separate pages.

10. SYSTEM COMMON:

 "o" for implemented or an "x" for not implemented. The following abbreviations are used:
 Song Pos = Song Position
 Song Sel = Song Select
 Tune = Tune Request

11. SYSTEM REAL TIME:

 "o" for implemented or an "x" for not implemented. The following abbreviations are used:
 Clock = Timing Clock
 Commands = Start, Continue and Stop

12. AUX. MESSAGES:

 "o" for implemented or an "x" for not implemented. The following abbreviations are used:
 Aux = Auxiliary
 Active Sense = Active Sensing

13. NOTES:
 The "Notes" column can be any comments such as:
 Power Up messages transmitted, implementation of program changes to additional
 memory banks, etc.

Tables T-1

TABLE I

SUMMARY OF STATUS BYTES

 STATUS NUMBER DESCRIPTION
 Hex Binary OF DATA
 D7--D0 BYTES

Channel Voice Messages

 8nH 1000nnnn 2 Note Off

 9nH 1001nnnn 2 Note On (a velocity of 0 = Note Off)

 AnH 1010nnnn 2 Polyphonic key pressure/Aftertouch

 BnH 1011nnnn 2 Control change

 CnH 1100nnnn 1 Program change

 DnH 1101nnnn 1 Channel pressure/After touch

 EnH 1110nnnn 2 Pitch bend change

Channel Mode Messages

 BnH 1011nnnn (01111xxx) 2 Selects Channel Mode

System Messages

 F0H 11110000 ***** System Exclusive

 11110sss 0 to 2 System Common

 11111ttt 0 System Real Time

NOTES:
 nnnn: N-1, where N = Channel #,
 i.e. 0000 is Channel 1, 0001 is Channel 2,
 and 1111 is Channel 16.

 *****: 0iiiiiii, data, ..., EOX
 iiiiiii: Identification
 sss: 1 to 7
 ttt: 0 to 7
 xxx: Channel Mode messages are sent under the same Status Byte as the
 Control Change messages (BnH). They are differentiated by the first data
 byte which will have a value from 121 to 127 for Channel Mode
 messages.

T-2 MIDI 1.0 Detailed Specification 4.2

TABLE II

CHANNEL VOICE MESSAGES

 STATUS DATA BYTES DESCRIPTION
 Hex Binary

 8nH 1000nnnn 0kkkkkkk Note Off
 0vvvvvvv vvvvvvv: note off velocity

 9nH 1001nnnn 0kkkkkkk Note On
 0vvvvvvv vvvvvvv ≠ 0: velocity
 vvvvvvv = 0: note off

 AnH 1010nnnn 0kkkkkkk Polyphonic Key Pressure (Aftertouch)
 0vvvvvvv vvvvvvv: pressure value

 BnH 1011nnnn 0ccccccc Control Change (See Table III)
 0vvvvvvv ccccccc: control # (0-119)
 vvvvvvv: control value

 ccccccc = 120 thru 127: Reserved. (See Table IV)

 CnH 1100nnnn 0ppppppp Program Change
 ppppppp: program number (0-127)

 DnH 1101nnnn 0vvvvvvv Channel Pressure (Aftertouch)
 vvvvvvv: pressure value

 EnH 1110nnnn 0vvvvvvv Pitch Bend Change LSB
 0vvvvvvv Pitch Bend Change MSB

NOTES:

1. nnnn: Voice Channel number (1-16, coded as defined in Table I notes)

2. kkkkkkk: note number (0 - 127)

3. vvvvvvv: key velocity
 A logarithmic scale is recommended.

4. Continuous controllers are divided into Most Significant and Least Significant Bytes. If only seven bits of resolution
are needed for any particular controllers, only the MSB is sent. It is not necessary to send the LSB. If more resolution is
needed, then both are sent, first the MSB, then the LSB. If only the LSB has changed in value, the LSB may be sent
without re-sending the MSB.

Tables T-3

TABLE III

CONTROLLER NUMBERS

 CONTROL NUMBER CONTROL FUNCTION
 (2nd Byte value)

 Decimal Hex

 0 00H Bank Select
 1 01H Modulation wheel or lever
 2 02H Breath Controller
 3 03H Undefined
 4 04H Foot controller
 5 05H Portamento time
 6 06H Data entry MSB
 7 07H Channel Volume (formerly Main Volume)
 8 08H Balance
 9 09H Undefined
 10 0AH Pan
 11 0BH Expression Controller
 12 0CH Effect Control 1
 13 0DH Effect Control 2
 14-15 0E-0FH Undefined
 16-19 10-13H General Purpose Controllers (#'s 1-4)
 20-31 14-1FH Undefined
 32-63 20-3FH LSB for values 0-31
 64 40H Damper pedal (sustain)
 65 41H Portamento On/Off
 66 42H Sostenuto
 67 43H Soft pedal
 68 44H Legato Footswitch (vv = 00-3F:Normal, 40-7F=Legatto)
 69 45H Hold 2
 70 46H Sound Controller 1 (default: Sound Variation)
 71 47H Sound Controller 2 (default: Timbre/Harmonic Intensity)
 72 48H Sound Controller 3 (default: Release Time)
 73 49H Sound Controller 4 (default: Attack Time)
 74 4AH Sound Controller 5 (default: Brightness)
 75-79 4BH-4FH Sound Controllers 6-10 (no defaults)
 80-83 50-53H General Purpose Controllers (#'s 5-8)
 84 54H Portamento Control
 85-90 55-5AH Undefined
 91 5BH Effects 1 Depth (formerly External Effects Depth)
 92 5CH Effects 2 Depth (formerly Tremolo Depth)
 93 5DH Effects 3 Depth (formerly Chorus Depth)
 94 5EH Effects 4 Depth (formerly Celeste (Detune) Depth)
 95 5FH Effects 5 Depth (formerly Phaser Depth)
 96 60H Data increment
 97 61H Data decrement
 98 62H Non-Registered Parameter Number LSB
 99 63H Non-Registered Parameter Number MSB
 100 64H Registered Parameter Number LSB
 101 65H Registered Parameter Number MSB
 102-119 66-77H Undefined
 120-127 78-7FH Reserved for Channel Mode Messages

T-4 MIDI 1.0 Detailed Specification 4.2

TABLE IIIa

REGISTERED PARAMETER NUMBERS

 Parameter Number Function
 LSB MSB

 00H 00H Pitch Bend Sensitivity
 01H 00H Fine Tuning
 02H 00H Coarse Tuning
 03H 00H Tuning Program Select
 04H 00H Tuning Bank Select

Tables T-5

TABLE IV

CHANNEL MODE MESSAGES

 STATUS DATA BYTES DESCRIPTION
 Hex Binary

 Bn 1011nnnn 0ccccccc Mode Messages
 0vvvvvvv
 ccccccc = 120: All Sound Off
 vvvvvvv = 0

 ccccccc = 121: Reset All Controllers
 vvvvvvv = 0

 ccccccc = 122:Local Control
 vvvvvvv = 0, Local Control Off
 vvvvvvv = 127, Local Control On

 ccccccc = 123: All Notes Off
 vvvvvvv = 0

 ccccccc = 124: Omni Mode Off (All Notes Off)
 vvvvvvv = 0

 ccccccc = 125:Omni Mode On (All Notes Off)
 vvvvvvv = 0

 ccccccc = 126: Mono Mode On (Poly Mode Off)
 (All Notes Off)
 vvvvvvv = M, where M is the number of
 channels.
 vvvvvvv = 0, the number of channels equals the
 number of voices in the receiver.

 ccccccc = 127: Poly Mode On (Mono Mode Off)
 (All Notes Off)
 vvvvvvv = 0

NOTES:

1. nnnn: Basic Channel number (1-16)

2. ccccccc: Controller number (121 - 127)

3. vvvvvvv: Controller value

T-6 MIDI 1.0 Detailed Specification 4.2

TABLE V

SYSTEM COMMON MESSAGES

 STATUS DATA BYTES DESCRIPTION
 Hex Binary

 F1H 11110001 0nnndddd MIDI Time Code Quarter Frame
 nnn: Message Type
 dddd: Values

 F2H 11110010 Song Position Pointer
 0lllllll lllllll: (Least significant)
 0hhhhhhh hhhhhhh: (Most significant)

 F3H 11110011 0sssssss Song Select
 sssssss: Song #

 F4H 11110100 Undefined

 F5H 11110101 Undefined

 F6H 11110110 none Tune Request

 F7H 11110111 none EOX: "End of System Exclusive" flag

Tables T-7

TABLE VI

SYSTEM REAL TIME MESSAGES

 STATUS DATA BYTES DESCRIPTION
 Hex Binary

 F8H 11111000 Timing Clock
 F9H 11111001 Undefined
 FAH 11111010 Start
 FBH 11111011 Continue
 FCH 11111100 Stop
 FDH 11111101 Undefined
 FEH 11111110 Active Sensing
 FFH 11111111 System Reset

T-8 MIDI 1.0 Detailed Specification 4.2

TABLE VII

SYSTEM EXCLUSIVE MESSAGES

 STATUS DATA BYTES DESCRIPTION
 Hex Binary

 F0H 11110000 SOX: Start of System Exclusive Status Byte

0iiiiiii System Exclusive Sub-ID (see note 1)
(00 - 7CH) Manufacturer Identification
(7DH) Non Commercial System Exclusive ID
(7EH) Non-Real Time System Exclusive
(7FH) Real Time System Exclusive

 0ddddddd
. Any number of data bytes may be sent here, for any purpose, as
. long as they all have a zero in the most significant bit. (see note 2)
.

 0ddddddd

 F7H 11110111 EOX: End of System Exclusive

NOTES:

1. 0iiiiiii:

A) Manufacturer identification (0-124). If the first byte of this ID is 0, the following two bytes are used as
extensions to the Manufacturer ID. See Table VIIb for a listing of currently assigned Manufacturer ID numbers.
A Manufacturers ID may be obtained from the MIDI Manufacturers Association.

B) ID 7DH (125) is reserved for non-commercial use (e.g. schools, research, etc.) and is not to be used on any
product released to the public.

C) ID 7EH (126) and 7FH (127) are used for Universal System Exclusive extensions to the MIDI specification.
See Table VIIa for a listing of currently defined Non-Real Time and Real Time messages.

2. 0ddddddd:

All bytes between the System Exclusive Status byte and EOX must have zeroes in the Most Significant Bit -- which
therefore makes them Data Bytes -- with the exception of System Real Time Status Bytes (F8H-FFH) (see Table
VI). Any other Status Byte that appears between the SOX (F0H) and EOX (F7H) will be considered an EOX
message, and terminate the System Exclusive message.

Tables T-9

TABLE VIIa

CURRENTLY DEFINED UNIVERSAL SYSTEM EXCLUSIVE MESSAGES

 SUB-ID #1 SUB-ID #2 DESCRIPTION

Non-Real Time (7EH)

 00 -- Unused
 01 (not used) Sample Dump Header
 02 (not used) Sample Data Packet
 03 (not used) Sample Dump Request
 04 nn MIDI Time Code
 00 Special
 01 Punch In Points
 02 Punch Out Points
 03 Delete Punch In Point
 04 Delete Punch Out Point
 05 Event Start Point
 06 Event Stop Point
 07 Event Start Points with additional info.
 08 Event Stop Points with additional info.
 09 Delete Event Start Point
 0A Delete Event Stop Point
 0B Cue Points
 0C Cue Points with additional info.
 0D Delete Cue Point
 0E Event Name in additional info.
 05 nn Sample Dump Extensions
 01 Multiple Loop Points
 02 Loop Points Request
 06 nn General Information
 01 Identity Request
 02 Identity Reply
 07 nn File Dump
 01 Header
 02 Data Packet
 03 Request
 08 nn MIDI Tuning Standard
 00 Bulk Dump Request
 01 Bulk Dump Reply
 09 nn General MIDI
 01 General MIDI System On
 02 General MIDI System Off
 7B (not used) End Of File
 7C (not used) Wait
 7D (not used) Cancel
 7E (not used) NAK
 7F (not used) ACK

T-10 MIDI 1.0 Detailed Specification 4.2

CURRENTLY DEFINED UNIVERSAL SYSTEM EXCLUSIVE MESSAGES - continued

Real Time (7FH)

 00 -- Unused
 01 nn MIDI Time Code
 01 Full Message
 02 User Bits
 02 nn MIDI Show Control
 00 MSC Extensions
 01 - 7F MSC Commands
 (Detailed in MSC documentation)
 03 nn Notation Information
 01 Bar Number
 02 Time Signature (Immediate)
 42 Time Signature (Delayed)
 04 nn Device Control
 01 Master Volume
 02 Master Balance
 05 nn Real Time MTC Cueing
 00 Special
 01 Punch In Points
 02 Punch Out Points
 03 (Reserved)
 04 (Reserved)
 05 Event Start points
 06 Event Stop points
 07 Event Start points with additional info.
 08 Event Stop points with additional info.
 09 (Reserved)
 0A (Reserved)
 0B Cue points
 0C Cue points with additional info.
 0D (Reserved)
 0E Event Name in additional into.
 06 nn MIDI Machine Control Commands
 00 - 7F MMC Commands
 (Detailed in MMC documentation)
 07 nn MIDI Machine Control Responses
 00 - 7F MMC Commands
 (Detailed in MMC documentation)
 08 nn MIDI Tuning Standard
 02 Note Change

NOTES:

1. The standardized format for both Real Time and Non-Real Time messages is as follows:
 F0H <ID number> <device ID> <sub-ID#1> <sub-ID#2>...... F7H

2. Additional details and descriptions of MTC MSC and MMC are available as separate documents.

Tables T-11

TABLE VIIb

SYSTEM EXCLUSIVE MANUFACTURER'S ID NUMBERS

 NUMBER MANUFACTURER NUMBER MANUFACTURER

American Group
 01H Sequential
 02H IDP
 03H Voyetra/Octave-Plateau
 04H Moog
 05H Passport Designs
 06H Lexicon
 07H Kurzweil
 08H Fender
 09H Gulbransen
 0AH AKG Acoustics
 0BH Voyce Music
 0CH Waveframe Corp
 0DH ADA Signal Processors
 0EH Garfield Electronics
 0FH Ensoniq
 10H Oberheim
 11H Apple Computer
 12H Grey Matter Response
 13H Digidesign
 14H Palm Tree Instruments
 15H JLCooper Electronics
 16H Lowrey
 17H Adams-Smith
 18H Emu Systems
 19H Harmony Systems
 1AH ART
 1BH Baldwin
 1CH Eventide
 1DH Inventronics
 1FH Clarity
 00H 00H 01H Time Warner Interactive
 00H 00H 07H Digital Music Corp.
 00H 00H 08H IOTA Systems
 00H 00H 09H New England Digital
 00H 00H 0AH Artisyn
 00H 00H 0BH IVL Technologies
 00H 00H 0CH Southern Music Systems
 00H 00H 0DH Lake Butler Sound Company
 00H 00H 0EH Alesis
 00H 00H 10H DOD Electronics
 00H 00H 11H Studer-Editech
 00H 00H 14H Perfect Fretworks
 00H 00H 15H KAT
 00H 00H 16H Opcode
 00H 00H 17H Rane Corp.
 00H 00H 18H Anadi Inc.
 00H 00H 19H KMX
 00H 00H 1AH Allen & Heath Brenell
 00H 00H 1BH Peavey Electronics
 00H 00H 1CH 360 Systems
 00H 00H 1DH Spectrum Design and Development
 00H 00H 1EH Marquis Music

 00H 00H 1FH Zeta Systems
 00H 00H 20H Axxes
 00H 00H 21H Orban
 00H 00H 24H KTI
 00H 00H 25H Breakaway Technologies
 00H 00H 26H CAE
 00H 00H 29H Rocktron Corp.
 00H 00H 2AH PianoDisc
 00H 00H 2BH Cannon Research Group
 00H 00H 2DH Rogers Instrument Corp.
 00H 00H 2EH Blue Sky Logic
 00H 00H 2FH Encore Electronics
 00H 00H 30H Uptown
 00H 00H 31H Voce
 00H 00H 32H CTI Audio, Inc. (Music. Intel Dev.)
 00H 00H 33H S&S Research
 00H 00H 34H Broderbund Software, Inc.
 00H 00H 35H Allen Organ Co.
 00H 00H 37H Music Quest
 00H 00H 38H APHEX
 00H 00H 39H Gallien Krueger
 00H 00H 3AH IBM
 00H 00H 3CH Hotz Instruments Technologies
 00H 00H 3DH ETA Lighting
 00H 00H 3EH NSI Corporation
 00H 00H 3FH Ad Lib, Inc.
 00H 00H 40H Richmond Sound Design
 00H 00H 41H Microsoft
 00H 00H 42H The Software Toolworks
 00H 00H 43H Niche/RJMG
 00H 00H 44H Intone
 00H 00H 47H GT Electronics/Groove Tubes
 00H 00H 4FH InterMIDI, Inc.
 00H 00H 49H Timeline Vista
 00H 00H 4AH Mesa Boogie
 00H 00H 4CH Sequoia Development
 00H 00H 4DH Studio Electronics
 00H 00H 4EH Euphonix
 00H 00H 4FH InterMIDI
 00H 00H 50H MIDI Solutions
 00H 00H 51H 3DO Company
 00H 00H 52H Lightwave Research
 00H 00H 53H Micro-W
 OOH OOH 54H Spectral Synthesis
 OOH OOH 55H Lone Wolf
 00H 00H 56H Studio Technologies
 00H 00H 57H Peterson EMP
 00H 00H 58H Atari
 00H 00H 59H Marion Systems
 00H 00H 5AH Design Event
 00H 00H 5BH Winjammer Software
 00H 00H 5CH AT&T Bell Labs

T-12 MIDI 1.0 Detailed Specification 4.2

SYSTEM EXCLUSIVE MANUFACTURER'S ID NUMBERS - continued

 NUMBER MANUFACTURER NUMBER MANUFACTURER

 00H 00H 5EH Symetrix
 00H 00H 5FH MIDI the World
 00H 00H 60H Desper Products
 00H 00H 61H Micros 'N MIDI
 00H 00H 62H Accordians Intl
 00H 00H 63H EuPhonics
 00H 00H 64H Musonix
 00H 00H 65H Turtle Beach Systems
 00H 00H 66H Mackie Designs
 00H 00H 67H Compuserve
 00H 00H 68H BES Technologies
 00H 00H 69H QRS Music Rolls
 00H 00H 6AH P G Music
 00H 00H 6BH Sierra Semiconductor
 00H 00H 6CH EpiGraf Audio Visual
 00H 00H 6DH Electronics Deiversified
 00H 00H 6EH Tune 1000
 00H 00H 6FH Advanced Micro Devices
 00H 00H 70H Mediamation
 00H 00H 71H Sabine Music
 00H 00H 72H Woog Labs
 00H 00H 73H Micropolis
 00H 00H 74H Ta Horng Musical Inst.
 00H 00H 75H eTek (formerly Forte)
 00H 00H 76H Electrovoice
 00H 00H 77H Midisoft
 00H 00H 78H Q-Sound Labs
 00H 00H 79H Westrex
 00H 00H 7AH NVidia
 00H 00H 7BH ESS Technology
 00H 00H 7CH MediaTrix Peripherals
 00H 00H 7DH Brooktree
 00H 00H 7EH Otari
 00H 00H 7FH Key Electronics
 00H 00H 80H Crystalake Multimedia
 00H 00H 81H Crystal Semiconductor
 00H 00H 82H Rockwell Semiconductor

European Group
 20H Passac
 21H SIEL
 22H Synthaxe
 24H Hohner
 25H Twister
 26H Solton
 27H Jellinghaus MS
 28H Southworth Music Systems
 29H PPG
 2AH JEN
 2BH SSL Limited
 2CH Audio Veritrieb
 2FH Elka
 30H Dynacord
 31H Viscount
 33H Clavia Digital Instruments
 34H Audio Architecture

 35H GeneralMusic Corp.
 39H Soundcraft Electronics
 3BH Wersi
 3CH Avab Electronik Ab
 3DH Digigram
 3EH Waldorf Electronics
 3FH Quasimidi
 00H 20H 00H Dream
 00H 20H 01H Strand Lighting
 00H 20H 02H Amek Systems
 00H 20H 04H Böhm Electronic
 00H 20H 06H Trident Audio
 00H 20H 07H Real World Studio
 00H 20H 09H Yes Technology
 00H 20H 0AH Audiomatica
 00H 20H 0BH Bontempi/Farfisa
 00H 20H 0CH F.B.T. Elettronica
 00H 20H 0DH MidiTemp
 00H 20H 0EH LA Audio (Larking Audio)
 00H 20H 0FH Zero 88 Lighting Limited
 00H 20H 10H Micon Audio Electronics GmbH
 00H 20H 11H Forefront Technology
 00H 20H 13H Kenton Electronics
 00H 20H 15H ADB
 00H 20H 16H Marshall Products
 00H 20H 17H DDA
 00H 20H 18H BSS
 00H 20H 19H MA Lighting Technology
 00H 20H 1AH Fatar
 00H 20H 1BH QSC Audio
 00H 20H 1CH Artisan Classic Organ
 00H 20H 1DH Orla Spa
 00H 20H 1EH Pinnacle Audio
 00H 20H 1FH TC Electonics
 00H 20H 20H Doepfer Musikelektronik
 00H 20H 21H Creative Technology Pte
 00H 20H 22H Minami/Seiyddo
 00H 20H 23H Goldstar
 00H 20H 24H Midisoft s.a.s di M. Cima
 00H 20H 25H Samick
 00H 20H 26H Penny and Giles
 00H 20H 27H Acorn Computer
 00H 20H 28H LSC Electronics
 00H 20H 29H Novation EMS
 00H 20H 2AH Samkyung Mechatronics
 00H 20H 2BH Medeli Electronics
 00H 20H 2CH Charlie Lab
 00H 20H 2DH Blue Chip Music Tech
 00H 20H 2EH BEE OH Corp

Tables T-13

SYSTEM EXCLUSIVE MANUFACTURER'S ID NUMBERS - continued

 NUMBER MANUFACTURER NUMBER MANUFACTURER

Japanese Group (as of 10/92)
 40H Kawai
 41H Roland
 42H Korg
 43H Yamaha
 44H Casio
 46H Kamiya Studio
 47H Akai
 48H Japan Victor
 49H Mesosha
 4AH Hoshino Gakki
 4BH Fujitsu Elect
 4CH Sony
 4DH Nisshin Onpa
 4EH TEAC
 50H Matsushita Electric
 51H Fostex
 52H Zoom
 53H Midori Electronics
 54H Matsushita Communication Industrial
 55H Suzuki Musical Inst. Mfg.

T-14 MIDI 1.0 Detailed Specification 4.2

TABLE VIII

ADDITIONAL OFFICIAL SPECIFICATION DOCUMENTS PUBLISHED BY
THE MIDI MANUFACTURERS ASSCOCIATION

 DOCUMENT TITLE DESCRIPTION

 MIDI Time Code Recommended Practice RP004/RP008
 MIDI Show Control 1.1 Recommended Practice RP002 /RP014*
 MIDI Machine Control Recommended Practice RP013
 Standard MIDI Files Recommended Practice RP001
 General MIDI System Level 1 Recommended Practice RP003

*New Version, February 1996

Note: All these specifications are included in this MMA “Complete Detailed MIDI 1.0 Specification” book.

MIDI Time Code

Published by:
The MIDI Manufacturers Association

Los Angeles, CA

MMA0001 / RP004 / RP008

This document is reprinted from the
MIDI 1.0 Detailed Specification v 4.1.1 and the
MIDI 1.0 Addendum v 4.2

Copyright © 1987, 1991, 1994 MIDI Manufacturers Association Incorporated

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED IN ANY FORM OR BY ANY MEANS,
ELECTRONIC OR MECHANICAL, INCLUDING INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT
PERMISSION IN WRITING FROM THE MIDI MANUFACTURERS ASSOCIATION.

MMA
POB 3173
La Habra CA 90632-3173

MIDI Time Code (Doc 4.2) 1

MIDI Time Code

For device synchronization, MIDI Time Code uses two basic types of messages, described as
Quarter Frame and Full. There is also a third, optional message for encoding SMPTE user bits.

Quarter Frame Messages

Quarter Frame messages are used only while the system is running. They are rather like the
PPQN or MIDI clocks to which we are accustomed. But there are several important ways in
which Quarter Frame messages differ from the other systems.

As their name implies, they have fine resolution. If we assume 30 frames per second, there will
be 120 Quarter Frame messages per second. This corresponds to a maximum latency of 8.3
milliseconds (at 30 frames per second), with accuracy greater than this possible within the
specific device (which may interpolate in between quarter frames to "bit" resolution). Quarter
Frame messages serve a dual purpose: besides providing the basic timing pulse for the system,
each message contains a unique nibble (four bits) defining a digit of a specific field of the
current SMPTE time.

Quarter frames messages should be thought of as groups of eight messages. One of these
groups encodes the SMPTE time in hours, minutes, seconds, and frames. Since it takes eight
quarter frames for a complete time code message, the complete SMPTE time is updated every
two frames. Each quarter frame message contains two bytes. The first byte is F1, the Quarter
Frame System Common byte. The second byte contains a nibble that represents the message
type (0 through 7), and a nibble for one of the digits of a time field (hours, minutes, seconds or
frames).

Quarter Frame Messages (2 bytes):

 F1 <message>

 F1 System Common status byte
 <message> 0nnn dddd

 nnn Message Type:
 0 = Frame count LS nibble
 1 = Frame count MS nibble
 2 = Seconds count LS nibble
 3 = Seconds count MS nibble
 4 = Minutes count LS nibble
 5 = Minutes count MS nibble
 6 = Hours count LS nibble
 7 = Hours count MS nibble and SMPTE Type

 dddd 4 bits of binary data for this Message Type

2 MIDI Time Code (Doc 4.2)

After both the MS nibble and the LS nibble of the above counts are assembled, their bit fields
are assigned as follows:

 FRAME COUNT: xxx yyyyy
 xxx Undefined and reserved for future use. Transmitter must set these bits
 to 0 and receiver should ignore!
 yyyyy Frame count (0-29)

 SECONDS COUNT: xx yyyyyy
 xx Undefined and reserved for future use. Transmitter must set these bits
 to 0 and receiver should ignore!
 yyyyyy Seconds Count (0-59)

 MINUTES COUNT: xx yyyyyy
 xx Undefined and reserved for future use. Transmitter must set these bits
 to 0 and receiver should ignore!
 yyyyyy Minutes Count (0-59)

 HOURS COUNT: x yy zzzzz
 x Undefined and reserved for future use. Transmitter must set this bit to
 0 and receiver should ignore!

 yy Time Code Type:
 0 = 24 Frames/Second
 1 = 25 Frames/Second
 2 = 30 Frames/Second (Drop-Frame)
 3 = 30 Frames/Second (Non-Drop)

 zzzzz Hours Count (0-23)

MIDI Time Code (Doc 4.2) 3

Quarter Frame Message Implementation

When time code is running in the forward direction, the device producing the MIDI Time Code
will send Quarter Frame messages at quarter frame intervals in the following order:

 F1 0X
 F1 1X
 F1 2X
 F1 3X
 F1 4X
 F1 5X
 F1 6X
 F1 7X

after which the sequence repeats itself, at a rate of one complete 8-message sequence every 2
frames (8 quarter frames). When time code is running in reverse, the quarter frame messages
are sent in reverse order, starting with F1 7X and ending with F1 0X. Again, at least 8
quarter frame messages must be sent. The arrival of the F1 0X and F1 4X messages always
denote frame boundaries.

Since 8 quarter frame messages are required to definitely establish the actual SMPTE time,
timing lock cannot be achieved until the reader has read a full sequence of 8 messages, from
first message to last. This will take from 2 to 4 frames to do, depending on when the reader
comes on line.

During fast forward, rewind or shuttle modes, the time code generator should stop sending
quarter frame messages, and just send a Full Message once the final destination has been
reached. The generator can then pause for any devices to shuttle to that point, and resume by
sending quarter frame messages when play mode is resumed. Time is considered to be
"running" upon receipt of the first quarter frame message after a Full Message.

Do not send quarter frame messages continuously in a shuttle mode at high speed, since this
unnecessarily clogs the MIDI data lines. If you must periodically update a device's time code
during a long shuttle, then send a Full Message every so often.

The quarter frame message F1 0X (Frame Count LS nibble) must be sent on a frame
boundary. The frame number indicated by the frame count is the number of the frame which
starts on that boundary. This follows the same convention as normal SMPTE longitudinal time
code, where bit 00 of the 80-bit message arrives at the precise time that the frame it represents
is actually starting. The SMPTE time will be incremented by 2 frames for each 8-message
sequence, since an 8-message sequence will take 2 frames to send.

Another way to look at it is: When the last quarter frame message (F1 7X) arrives and the
time can be fully assembled, the information is now actually 2 frames old. A receiver of this
time must keep an internal offset of +2 frames for displaying. This may seem unusual, but it is
the way normal SMPTE is received and also makes backing up (running time code backwards)
less confusing - when receiving the 8 quarter frame messages backwards, the F1 0X message
still falls on the boundary of the frame it represents.

Each quarter frame message number (0->7) indicates which of the 8 quarter frames of the 2-
frame sequence we are on. For example, message 0 (F1 0X) indicates quarter frame 1 of frame
#1 in the sequence, and message 4 (F1 4X) indicates quarter frame 1 of frame #2 in the
sequence. If a reader receives these message numbers in descending sequence, then it knows
that time code is being sent in the reverse direction. Also, a reader can come on line at any time

4 MIDI Time Code (Doc 4.2)

and know exactly where it is in relation to the 2-frame sequence, down to a quarter frame
accuracy.

It is the responsibility of the time code reader to insure that MTC is being properly interpreted.
This requires waiting a sufficient amount of time in order to achieve time code lock, and
maintaining that lock until synchronization is dropped. Although each passing quarter frame
message could be interpreted as a relative quarter frame count, the time code reader should
always verify the actual complete time code after every 8-message sequence (2 frames) in order
to guarantee a proper lock. If synchronization is dropped the transmitter should send a NAK
message. The receiver should interpret this as "tape has stopped" and should turn of any
lingering notes, etc.

For example, let's assume the time is 01:37:52:16 (30 frames per second, non-drop). Since the
time is sent from least to most significant digit, the first two Quarter Frame messages will
contain the data 16 (frames), the second two will contain the data 52 (seconds), the third two
will represent 37 (minutes), and the final two encode the 1 (hours and SMPTE Type). The
Quarter Frame Messages description defines how the binary data for each time field is spread
across two nibbles. This scheme (as opposed to simple BCD) leaves some extra bits for encoding
the SMPTE type (and for future use).

Now, let's convert our example time of 01:37:52:16 into Quarter Frame format, putting in the
correct hexadecimal conversions:

 F1 00
 F1 11 10H = 16 decimal

 F1 24
 F1 33 34H = 52 decimal

 F1 45
 F1 52 25H = 37 decimal

 F1 61
 F1 76 01H = 01 decimal (SMPTE Type is 30 frames/non-drop)

 (note: the value transmitted is "6" because the SMPTE Type (11 binary) is encoded in
 bits 5 and 6)

For SMPTE Types of 24, 30 drop frame, and 30 non-drop frame, the frame number will always
be even. For SMPTE Type of 25, the frame number may be even or odd, depending on which
frame number the 8-message sequence had started. In this case, you can see where the MIDI
Time Code frame number would alternate between even and odd every second.

MIDI Time Code will take a very small percentage of the MIDI bandwidth. The fastest SMPTE
time rate is 30 frames per second. The specification is to send 4 messages per frame - in other
words, a 2-byte message (640 microseconds) every 8.333 milliseconds. This takes 7.68 % of the
MIDI bandwidth - a reasonably small amount. Also, in the typical MIDI Time Code systems we
have imagined, it would be rare that normal MIDI and MIDI Time Code would share the same
MIDI bus at the same time.

NOTE: When a VITC signal drives a MIDI Time Code system through a SMPTE-to-MIDI converter,
the MIDI Time Code frames do not advance by two as expected. They may advance by one or not at
all, and time code which was even frame numbers may become odd frame numbers. To accomplish
synchronization, it necessary to wait until the first four (at least) bits of the SMPTE have been
received before sending the MTC so you know if the frame has advanced or not.

MIDI Time Code (Doc 4.2) 5

Full Message

Quarter Frame messages handle the basic running work of the system. But they are not
suitable for use when equipment needs to be fast-forwarded or rewound, located or cued to a
specific time, as sending them continuously at accelerated speeds would unnecessarily clog up
or outrun the MIDI data lines. For these cases, Full Messages are used, which encode the
complete time into a single message. After sending a Full Message, the time code generator can
pause for any mechanical devices to shuttle (or "autolocate") to that point, and then resume
running by sending quarter frame messages.

Full Message - (10 bytes)

 F0 7F <device ID> 01 <sub-ID 2> hr mn sc fr F7

 F0 7F Real Time Universal System Exclusive Header
 <device ID> 7F (message intended for entire system)
 01 <sub-ID 1>, 'MIDI Time Code'
 <sub-ID 2> 01, Full Time Code Message
 hr hours and type: 0 yy zzzzz
 yy type:
 00 = 24 Frames/Second
 01 = 25 Frames/Second
 10 = 30 Frames/Second (drop frame)
 11 = 30 Frames/Second (non-drop frame)
 zzzzz Hours (00->23)
 mn Minutes (00->59)
 sc Seconds (00->59)
 fr Frames (00->29)
 F7 EOX

Time is considered to be "running" upon receipt of the first Quarter Frame message after a Full
Message.

6 MIDI Time Code (Doc 4.2)

User Bits

"User Bits" are 32 bits provided by SMPTE for special functions which vary with the
application, and which can be programmed only from equipment especially designed for this
purpose. Up to four characters or eight digits can be written. Examples of use are adding a date
code or reel number to the tape. The User Bits tend not to change throughout a run of time
code.

User Bits Message - (15 bytes)

 F0 7F <device ID> 01 <sub-ID 2> u1 u2 u3 u4 u5 u6 u7 u8 u9 F7

 F0 7F Real Time Universal System Exclusive Header
 <device ID> 7F (message intended for entire system)
 01 <sub-ID 1> = MIDI Time Code
 <sub-id 2> 02, User Bits Message
 u1 0000aaaa
 u2 0000bbbb
 u3 0000cccc
 u4 0000dddd
 u5 0000eeee
 u6 0000ffff
 u7 0000gggg
 u8 0000hhhh
 u9 000000ji
 F7 EOX

Message bytes u1 through u8 correspond to SMPTE/EBU Binary Groups 1 through 8,
respectively. Byte u9 contains the SMPTE/EBU Binary Group Flag Bits, where j corresponds
to SMPTE time code bit 59 (EBU bit 43), and i corresponds to SMPTE time code bit 43 (EBU
bit 27).

If the Binary Group nibbles 1-8 are used to carry 8 bit information, they should be reassembled
as four 8-bit characters in the order: hhhhgggg ffffeeee ddddcccc bbbbaaaa. * If they are
used to carry time code number in BCD form (a common practice), then the frames units would
go into Group 1, and the hours tens in Group 8. To display correctly, on would start with Group
8 and finish with Group 1 - again, hhhhgggg ffffeeee ddddcccc bbbbaaaa.

This message can be sent whenever the User Bits values must be transferred to any devices
down the line. Note that the User Bits Message may be sent by the MIDI Time Code Converter
at any time. It is not sensitive to any mode.

*Note: This message was redefined in November 1991 to more accurately reflect the way SMPTE
time code is read. The original version specified that the “nibble fields decode in an 8-bit format:
aaaabbbb ccccdddd eeeeffff gggghhhh ii”.

MIDI Time Code (Doc 4.2) 7

MIDI Cueing

MIDI Cueing uses Set-Up Messages to address individual units in a system. (A "unit" can be a
multitrack tape deck, a VTR, a special effects generator, MIDI sequencer, etc.)

Of 128 possible event types, the following are currently defined:

MIDI Cueing Set-Up Messages (13 bytes plus any additional information):

 F0 7E <device ID> 04 <sub-ID 2> hr mn sc fr ff sl sm <add. info.> F7

 F0 7E Non-Real Time Universal System Exclusive Header
 <device ID> Device number of unit
 04 <sub-ID 1> = MIDI Time Code
 <sub-ID 2> Set-Up Type
 00 Special
 01 Punch In points
 02 Punch Out points
 03 Delete Punch In point
 04 Delete Punch Out point
 05 Event Start points
 06 Event Stop points
 07 Event Start points with additional info.
 08 Event Stop points with additional info.
 09 Delete Event Start point
 0A Delete Event Stop point
 0B Cue points
 0C Cue points with additional info.
 0D Delete Cue point
 0E Event Name in additional info.
 hr hours and type: 0 yy zzzzz
 yy type:
 00 = 24 Frames/Second
 01 = 25 Frames/Second
 10 = 30 Frames/Second drop frame
 11 = 30 Frames/Second non-drop frame
 zzzzz Hours (00-23)
 mn Minutes (00-59)
 sc Seconds (00-59)
 fr Frames (00-29)
 ff Fractional Frames (00-99)
 sl, sm Event Number (LSB first)
 <add. info.>
 F7 EOX

8 MIDI Time Code (Doc 4.2)

Description Of MTC Cueing Set-Up Types

 00 Special refers to the set-up information that affects a unit globally (as opposed to

individual tracks, sounds, programs, sequences, etc.). In this case, the Special
Type takes the place of the Event Number. Five are defined. Note that types 01
00 through 04 00 ignore the event time field.

00 00 Time Code Offset refers to a relative Time Code offset for each unit. For

example, a piece of video and a piece of music that are supposed to go
together may be created at different times, and more than likely have
different absolute time code positions - therefore, one must be offset from
the other so that they will match up. Just like there is one master time
code for an entire system, each unit only needs one offset value per unit.

01 00 Enable Event List means for a unit to enable execution of events in its

list if the appropriate MTC or SMPTE time occurs.

02 00 Disable Event List means for a unit to disable execution of its event list

but not to erase it. This facilitates an MTC Event Manager in muting
particular devices in order to concentrate on others in a complex system
where many events occur simultaneously.

03 00 Clear Event List means for a unit to erase its entire event list.

04 00 System Stop refers to a time when the unit may shut down. This serves

as a protection against Event Starts without matching Event Stops, tape
machines running past the end of the reel, and so on.

05 00 Event List Request is sent by a master to an MTC peripheral. If the

device ID (Channel Number) matches that of the peripheral, the
peripheral responds by transmitting its entire cue list as a sequence of
Set Up Messages, starting from the SMPTE time indicated in the Event
List Request message.

 01/02 Punch In and Punch Out refer to the enabling and disabling of record mode on a

unit. The Event Number refers to the track to be recorded. Multiple punch
in/punch out points (and any of the other event types below) may be specified by
sending multiple Set-Up messages with different times.

 03/04 Delete Punch In or Out deletes the matching point (time and event number)

from the Cue List.

 05/06 Event Start and Stop refer to the running or playback of an event, and imply

that a large sequence of events or a continuous event is to be started or stopped.
The event number refers to which event on the targeted slave is to be played. A
single event (i.e. playback of a specific sample, a fader movement on an
automated console, etc.) may occur several times throughout a given list of cues.
These events will be represented by the same event number, with different Start
and Stop times.

 07/08 Event Start and Stop with Additional Information refer to an event (as above)
with additional parameters transmitted in the Set Up message between the Time
and EOX. The additional parameters may take the form of an effects unit's
internal parameters, the volume level of a sound effect, etc. See below for a
description of additional information.

MIDI Time Code (Doc 4.2) 9

 09/0A Delete Event Start/Stop means to delete the matching (event number and time)

event (with or without additional information) from the Cue List.

 0B Cue Point refers to individual event occurrences, such as marking "hit" points for

sound effects, reference points for editing, and so on. Each Cue number may be
assigned to a specific reaction, such as a specific one-shot sound event (as
opposed to a continuous event, which is handled by Start/Stop). A single cue may
occur several times throughout a given list of cues. These events will be
represented by the same event number, with different Start and Stop times.

 0C Cue Point with Additional Information is exactly like Event Start/Stop with

Additional Information, except that the event represents a Cue Point rather than
a Start/Stop Point.

 0D Delete Cue Point means to Delete the matching (event number and time) Cue

Event with or without additional information from the Cue List.

 0E Event Name in Additional Information. This merely assigns a name to a given

event number. It is for human logging purposes. See Additional Information
description.

EVENT TIME: This is the SMPTE/MIDI Time Code time at which the given
event is supposed to occur. Actual time is in 1/100th frame
resolution, for those units capable of handling bits or some other
form of sub-frame resolution, and should otherwise be self-
explanatory.

EVENT NUMBER: This is a fourteen-bit value, enabling 16,384 of each of the above

types to be individually addressed. "sl" is the 7 LS bits, and "sm"
is the 7 MS bits.

ADDITIONAL Additional information consists of a nibblized MIDI data stream,
INFORMATION: LS nibble first. The exception is Set-Up Type OE, where the

additional information is nibblized ASCII, LS nibble first. An
ASCII newline is accomplished by sending CR and LF in the
ASCII. CR alone functions solely as a carriage return, and LF
alone functions solely as a Line-Feed.

 For example, a MIDI Note On message such as 91 46 7F would

be nibblized and sent as 01 09 06 04 0F 07. In this way, any
device can decode any message regardless of who it was intended
for. Device-specific messages should be sent as nibblized MIDI
System Exclusive messages.

10 MIDI Time Code (Doc 4.2)

Real Time MIDI Cueing Set-Up Messages (8 bytes plus any additional information):

F0 7F <device ID> 05 <sub-id #2> sl sm <additional info.> F7

 F0 7F Universal Real Time SysEx Header
 <device ID> ID of target device
 05 <sub id #1> = MIDI Time Code Cueing Messages
 <sub-ID #2> Set-Up Type
 00 Special
 Event Number = 04 00 = System Stop (All others reserved)
 01 Punch In points
 02 Punch Out points
 03 (Reserved)
 04 (Reserved)
 05 Event Start points
 06 Event Stop points
 07 Event Start points with additional info.
 08 Event Stop points with additional info.
 09 (Reserved)
 0A (Reserved)
 0B Cue points
 0C Cue points with additional info.
 0D (Reserved)
 0E Event Name in additional info.
 sl, sm Event Number (LSB first)
 <add. info.> nibblized as per the MTC Cueing Specification
 F7 EOX

Real Time MTC Cueing essentially duplicates the bulk of the Non-Real time MTC Cueing
messages in the Universal Real-Time area.

Note that the time field has been dropped. With this message the time would be “as soon as you
receive this.” All of the Delete messages plus many of the Special messages have been
excluded – they were intended for remote-editing of a cue list and are not needed for real-time
response.

The format and definitions of all other messages remains the same, as do their sub ID #2
definitions (in order to match one-on-one with their Non-Real Time counterparts).

Refer to the Non-Real Time MTC definitions (above) for more detailed information.

MIDI Time Code (Doc 4.2) 11

Potential Problems

There is a possible problem with MIDI mergers created before MTC was defined improperly
handling the F1 message, since they will not know how many bytes are following. However, in
typical MIDI Time Code systems, we do not anticipate applications where the MIDI Time Code
must be merged with other MIDI signals occurring at the same time.

Please note that there is plenty of room for additional set-up types, etc., to cover unanticipated
situations and configurations.

It is recommended that each MTC peripheral power up with its MIDI Manufacturer's System
Exclusive ID number as its default device ID. Obviously, it would be preferable to allow the
user to change this number from the device's front panel, so that several peripherals from the
same manufacturer may have unique IDs within the same MTC system.

In most cases, the device ID acts just like a channel number — this is how you address
individual pieces of equipment with universal system exclusive messages. Thus, the channel
number works as a good default. However, in large systems, a master controller or computer
may wish to individually address different instruments that are on the same MIDI channel —
therefore, the device ID should be user-adjustable to sort out such a problem. It is also
acceptable for a device to power up to the state it was in when last powered down.

MTC Signal Path Summary

Data sent between the Master Time Code Source (which may be, for example, a Multitrack
Tape Deck with a SMPTE Synchronizer) and the MIDI Time Code Converter is always SMPTE
Time Code.

Data sent from the MIDI Time Code Converter to the Master Control/Cue Sheet (note that this
may be a MTC-equipped tape deck or mixing console as well as a cue-sheet) is always MIDI
Time Code. The specific MIDI Time Code messages which are used depend on the current
operating mode, as explained below:

PLAY MODE: The Master Time Code Source (tape deck) is in normal PLAY
MODE at normal or vari-speed rates. The MIDI Time Code
Converter is transmitting Quarter Frame (F1) messages to the
Master Control/Cue Sheet. The frame messages are in
ASCENDING order, starting with "F1 0X" and ending with "F1
7X". If the tape machine is capable of play mode in REVERSE,
then the frame messages will be transmitted in REVERSE
sequence, starting with "F1 7X" and ending with "F1 0X".

CUE MODE: The Master Time Code Source is being "rocked", or "cued" by hand.

The tape is still contacting the playback head so that the listener
can cue, or preview the contents of the tape slowly. The MIDI Time
Code Converter is transmitting FRAME (F1) messages to the
Master Control/Cue Sheet. If the tape is being played in the
FORWARD direction, the frame messages are sent in
ASCENDING order, starting with "F1 0X" and ending with "F1
7X". If the tape machine is played in the REVERSE direction, then
the frame messages will be transmitted in REVERSE sequence,
starting with "F1 7X" and ending with "F1 0X".

12 MIDI Time Code (Doc 4.2)

 Because the tape is being moved by hand in Cue Mode, the tape
direction can change quickly and often. The order of the Frame
Message sequence must change along with the tape direction.

FAST FORWARD/ In this mode, the tape is in a high-speed wind or rewind, and is not
REWIND MODE: touching the playback head. No "cueing" of the taped material is

going on. Since this is a "search" mode, synchronization of the
Master Control/Cue Sheet is not as important as in the Play or
Cue Mode. Thus, in this mode, the MIDI Time Code Converter only
needs to send a "Full Message" every so often to the Cue Sheet.
This acts as a rough indicator of the Master's position. The SMPTE
time indicated by the "Full Message" actually takes effect upon the
reception of the next "F1" quarter frame message (when "Play
Mode" has resumed).

SHUTTLE MODE: This is just another expression for "Fast-Forward/Rewind Mode".

Reference

SMPTE 12M (ANSI V98.12M-1981).

Standard MIDI Files 1.0

Published by:
The MIDI Manufacturers Association

Los Angeles, CA

RP001

Revised February 1996

Copyright © 1988, 1994, 1996 MIDI Manufacturers Association

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED IN ANY FORM OR BY ANY MEANS,
ELECTRONIC OR MECHANICAL, INCLUDING INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT
PERMISSION IN WRITING FROM THE MIDI MANUFACTURERS ASSOCIATION.

MMA
POB 3173
La Habra CA 90632-3173

Standard MIDI Files 1.0 1

Standard MIDI Files 1.0

Introduction

The document outlines the specification for MIDI Files. The purpose of MIDI Files is to
provide a way of interchanging time-stamped MIDI data between different programs on the
same or different computers. One of the primary design goals is compact representation, which
makes it very appropriate for a disk-based file format, but which might make it inappropriate
for storing in memory for quick access by a sequencer program. (It can be easily converted to a
quickly-accessible format on the fly as files are read in or written out.) It is not intended to
replace the normal file format of any program, though it could be used for this purpose if
desired.

MIDI Files contain one or more MIDI streams, with time information for each event. Song,
sequence, and track structures, tempo and time signature information, are all supported. Track
names and other descriptive information may be stored with the MIDI data. This format
supports multiple tracks and multiple sequences so that if the user of a program which
supports multiple tracks intends to move a file to another one, this format can allow that to
happen.

This spec defines the 8-bit binary data stream used in the file. The data can be stored in a
binary file, nibbleized, 7-bit-ized for efficient MIDI transmission, converted to Hex ASCII, or
translated symbolically to a printable text file. This spec addresses what's in the 8-bit stream.
It does not address how a MIDI File will be transmitted over MIDI. It is the general feeling
that a MIDI transmission protocol will be developed for files in general and MIDI Files will
used this scheme.

2 Standard MIDI Files 1.0

Sequences, Tracks, Chunks: File Block Structure

Conventions

In this document, bit 0 means the least significant bit of a byte, and bit 7 is the most
significant.

Some numbers in MIDI Files are represented in a form called a variable-length quantity. These
numbers are represented 7 bits per byte, most significant bits first. All bytes except the last
have bit 7 set, and the last byte has bit 7 clear. If the number is between 0 and 127, it is thus
represented exactly as one byte.

Here are some examples of numbers represented as variable-length quantities:

 Number (hex) Representation (hex)
 00000000 00
 00000040 40
 0000007F 7F
 00000080 81 00
 00002000 C0 00
 00003FFF FF 7F
 00004000 81 80 00
 00100000 C0 80 00
 001FFFFF FF FF 7F
 00200000 81 80 80 00
 08000000 C0 80 80 00
 0FFFFFFF FF FF FF 7F

The largest number which is allowed is 0FFFFFFF so that the variable-length representation
must fit in 32 bits in a routine to write variable-length numbers. Theoretically, larger numbers
are possible, but 2 x 108 96ths of a beat at a fast tempo of 500 beats per minute is four days,
long enough for any delta-time!

Files

To any file system, a MIDI File is simply a series of 8-bit bytes. On the Macintosh, this byte
stream is stored in the data fork of a file (with file type 'Midi'), or on the Clipboard (with data
type 'Midi'). Most other computers store 8-bit byte streams in files — naming or storage
conventions for those computers will be defined as required.

Standard MIDI Files 1.0 3

Chunks

MIDI Files are made up of chunks. Each chunk has a 4-character type and a 32-bit length,
which is the number of bytes in the chunk. This structure allows future chunk types to be
designed which may easily be ignored if encountered by a program written before the chunk
type is introduced. Your programs should expect alien chunks and treat them as if they
weren't there.

Each chunk begins with a 4-character ASCII type. It is followed by a 32-bit length, most
significant byte first (a length of 6 is stored as 00 00 00 06). This length refers to the
number of bytes of data which follow: the eight bytes of type and length are not included.
Therefore, a chunk with a length of 6 would actually occupy 14 bytes in the disk file.

This chunk architecture is similar to that used by Electronic Arts' IFF format, and the chunks
described herein could easily be placed in an IFF file. The MIDI File itself is not an IFF file: it
contains no nested chunks, and chunks are not constrained to be an even number of bytes long.
Converting it to an IFF file is as easy as padding odd-length chunks, and sticking the whole
thing inside a FORM chunk.

MIDI Files contain two types of chunks: header chunks and track chunks. A header chunk
provides a minimal amount of information pertaining to the entire MIDI file. A track chunk
contains a sequential stream of MIDI data which may contain information for up to 16 MIDI
channels. The concepts of multiple tracks, multiple MIDI outputs, patterns, sequences, and
songs may all be implemented using several track chunks.

A MIDI file always starts with a header chunk, and is followed by one or more track chunks.

MThd <length of header data>
<header data>
MTrk <length of track data>
<track data>
MTrk <length of track data>
<track data>
 ...

4 Standard MIDI Files 1.0

Chunk Descriptions

Header Chunks

The header chunk at the beginning of the file specifies some basic information about the data
in the file. Here's the syntax of the complete chunk:

<Header Chunk> = <chunk type> <length> <format> <ntrks> <division>

As described above, <chunk type> is the four ASCII characters 'MThd'; <length> is a 32-bit
representation of the number 6 (high byte first).

The data section contains three 16-bit words, stored most-significant byte first.

The first word, <format>, specifies the overall organization of the file. Only three values of
<format> are specified:

 0 the file contains a single multi-channel track
 1 the file contains one or more simultaneous tracks (or MIDI outputs) of a

sequence
 2 the file contains one or more sequentially independent single-track patterns

More information about these formats is provided below.

The next word, <ntrks>, is the number of track chunks in the file. It will always be 1 for a
format 0 file.

The third word, <division>, specifies the meaning of the delta-times. It has two formats,
one for metrical time, and one for time-code-based time:

0 ticks per quarter-note

1

 15 14 8 7 0

ticks per frame
 negative
SMPTE format

If bit 15 of <division> is a zero, the bits 14 thru 0 represent the number of delta-time "ticks"
which make up a quarter-note. For instance, if <division> is 96, then a time interval of an
eighth-note between two events in the file would be 48.

If bit 15 of <division> is a one, delta-times in a file correspond to subdivisions of a second, in
a way consistent with SMPTE and MIDI time code. Bits 14 thru 8 contain one of the four
values -24, -25, -29, or -30, corresponding to the four standard SMPTE and MIDI time code
formats (-29 corresponds to 30 drop frame), and represents the number of frames per second.
These negative numbers are stored in two's complement form. The second byte (stored
positive) is the resolution within a frame: typical values may be 4 (MIDI time code resolution),
8, 10, 80 (bit resolution), or 100. This system allows exact specification of time-code-based
tracks, but also allows millisecond-based tracks by specifying 25 frames/sec and a resolution of
40 units per frame. If the events in a file are stored with bit resolution of thirty-frame time
code, the division word would be E250 hex.

Standard MIDI Files 1.0 5

Formats 0, 1, and 2

A Format 0 file has a header chunk followed by one track chunk. It is the most
interchangeable representation of data. It is very useful for a simple single-track player in a
program which needs to make synthesizers make sounds, but which is primarily concerned
with something else such as mixers or sound effect boxes. It is very desirable to be able to
produce such a format, even if your program is track-based, in order to work with these simple
programs. On the other hand, perhaps someone will write a format conversion from format 1
to format 0 which might be so easy to use in some setting that it would save you the trouble of
putting it into your program.

A Format 1 or 2 file has a header chunk followed by one or more track chunks. Programs
which support several simultaneous tracks should be able to save and read data in format 1, a
vertically one-dimensional form, that is, as a collection of tracks. Programs which support
several independent patterns should be able to save and read data in format 2, a horizontally
one-dimensional form. Providing these minimum capabilities will ensure maximum
interchangeability.

In a MIDI system with a computer and a SMPTE synchronizer which uses Song Pointer and
Timing Clock, tempo maps (which describe the tempo throughout the track, and may also
include time signature information, so that the bar number may be derived) are generally
created on the computer. To use them with the synchronizer, it is necessary to transfer them
from the computer. To make it easy for the synchronizer to extract this data from a MIDI File,
tempo information should always be stored in the first MTrk chunk. For a format 0 file, the
tempo will be scattered through the track and the tempo map reader should ignore the
intervening events; for a format 1 file, the tempo map must be stored as the first track. It is
polite to a tempo map reader to offer your user the ability to make a format 0 file with just the
tempo, unless you can use format 1.

All MIDI Files should specify tempo and time signature. If they don't, the time signature is
assumed to be 4/4, and the tempo 120 beats per minute. In format 0, these meta-events should
occur at least at the beginning of the single multi-channel track. In format 1, these meta-
events should be contained in the first track. In format 2, each of the temporally independent
patterns should contain at least initial time signature and tempo information.

We may decide to define other format IDs to support other structures. A program encountering
an unknown format ID may still read other MTrk chunks it finds from the file, as format 1 or
2, if its user can make sense of them and arrange them into some other structure if
appropriate. Also, more parameters may be added to the MThd chunk in the future: it is
important to read and honor the length, even if it is longer than 6.

Track Chunks

The track chunks (type MTrk) are where actual song data is stored. Each track chunk is
simply a stream of MIDI events (and non-MIDI events), preceded by delta-time values. The
format for Track Chunks (described below) is exactly the same for all three formats (0, 1, and 2:
see "Header Chunk" above) of MIDI Files.

Here is the syntax of an MTrk chunk (the + means "one or more": at least one MTrk event
must be present):

 <Track Chunk> = <chunk type> <length> <MTrk event>+

The syntax of an MTrk event is very simple:

6 Standard MIDI Files 1.0

 <MTrk event> = <delta-time> <event>

<delta-time> is stored as a variable-length quantity. It represents the amount of time before
the following event. If the first event in a track occurs at the very beginning of a track, or if
two events occur simultaneously, a delta-time of zero is used. Delta-times are always present.
(Not storing delta-times of 0 requires at least two bytes for any other value, and most delta-
times aren't zero.) Delta-time is in ticks as specified in the header chunk.

 <event> = <MIDI event> | <sysex event> | <meta-event>

<MIDI event> is any MIDI channel message. Running status is used: status bytes of MIDI
channel messages may be omitted if the preceding event is a MIDI channel message with the
same status. The first event in each MTrk chunk must specify status. Delta-time is not
considered an event itself: it is an integral part of the syntax for an MTrk event. Notice that
running status occurs across delta-times.

<sysex event> is used to specify a MIDI system exclusive message, either as one unit or in
packets, or as an "escape" to specify any arbitrary bytes to be transmitted. A normal complete
system exclusive message is stored in a MIDI File in this way:

 F0 <length> <bytes to be transmitted after F0>

The length is stored as a variable-length quantity. It specifies the number of bytes which
follow it, not including the F0 or the length itself. For instance, the transmitted message F0 43
12 00 07 F7 would be stored in a MIDI file as F0 05 43 12 00 07 F7. It is required to include the F7
at the end so that the reader of the MIDI file knows that it has read the entire message.

Another form of sysex event is provided which does not imply that an F0 should be
transmitted. This may be used as an "escape" to provide for the transmission of things which
would not otherwise be legal, including system realtime messages, song pointer or select, MIDI
Time Code, etc. This uses the F7 code:

 F7 <length> <all bytes to be transmitted>

Unfortunately, some synthesizer manufacturers specify that their system exclusive messages
are to be transmitted as little packets. Each packet is only part of an entire syntactical system
exclusive message, but the times they are transmitted at are important. Examples of this are
the bytes sent in a CZ patch dump, or the FB-01's "system exclusive mode" in which microtonal
data can be transmitted. The F0 and F7 sysex events may be used together to break up
syntactically complete system exclusive messages into timed packets.

An F0 sysex event is used for the first packet an a series — it is a message in which the F0
should be transmitted. An F7 sysex event is used for the remainder of the packets, which do
not begin with F0. (Of course, the F7 is not considered part of the system exclusive message).

A syntactic system exclusive message must always end with an F7, even if the real-life device
didn't send one, so that you know when you've reached the end of an entire sysex message
without looking ahead to the next event in the MIDI file. If it's stored in one complete F0 sysex
event, the last byte must be an F7. If it is broken up into packets, the last byte of the last
packet must be an F7. There also must not be any transmittable MIDI events in between the
packets of a multi-packet system exclusive message. This principle is illustrated in the
paragraph below.

Standard MIDI Files 1.0 7

Here is an example of a multi-packet system exclusive message: suppose the bytes F0 43 12 00
were to be sent, followed by a 200-tick delay, followed by the bytes 43 12 00 43 12 00, followed by
a 100-tick delay, followed by the bytes 43 12 00 F7, this would be in the MIDI File:

 F0 03 43 12 00
 81 48 200-tick delta-time
 F7 06 43 12 00 43 12 00
 64 100-tick delta-time
 F7 04 43 12 00 F7

When reading a MIDI File, and an F7 sysex event is encountered without a preceding F0 sysex
event to start a multi-packet system exclusive message sequence, it should be presumed that
the F7 event is being used as an "escape". In this case, it is not necessary that it end with an
F7, unless it is desired that the F7 be transmitted.

<meta-event> specifies non-MIDI information useful to this format or to sequencers, with
this syntax:

 FF <type> <length> <bytes>

All meta-events begin with FF, then have an event type byte (which is always less than 128),
and then have the length of the data stored as a variable-length quantity, and then the data
itself. If there is no data, the length is 0. As with chunks, future meta-events may be designed
which may not be known to existing programs, so programs must properly ignore meta-events
which they do not recognize, and indeed, should expect to see them. Programs must never
ignore the length of a meta-event which they do recognize, and they shouldn't be surprised if
it's bigger than they expected. If so, they must ignore everything past what they know about.
However, they must not add anything of their own to the end of a meta-event.

Sysex events and meta-events cancel any running status which was in effect. Running status
does not apply to and may not be used for these messages.

8 Standard MIDI Files 1.0

Meta-Events

A few meta-events are defined herein. It is not required for every program to support every
meta-event.

In the syntax descriptions for each of the meta-events a set of conventions is used to describe
parameters of the events. The FF which begins each event, the type of each event, and the
lengths of events which do not have a variable amount of data are given directly in
hexadecimal. A notation such as dd or se, which consists of two lower-case letters,
mnemonically represents an 8-bit value. Four identical lower-case letters such as wwww refer
to a 16-bit value, stored most-significant-byte first. Six identical lower-case letters such as
tttttt refer to a 24-bit value, stored most-significant-byte first. The notation len refers to
the length portion of the meta-event syntax, that is, a number, stored as a variable-length
quantity, which specifies how many data bytes follow it in the meta-event. The notations text
and data refer to however many bytes of (possibly text) data were just specified by the length.

In general, meta-events in a track which occur at the same time may occur in any order. If a
copyright event is used, it should be placed as early as possible in the file, so it will be noticed
easily. Sequence Number and Sequence/Track Name events, if present, must appear at time
0. An end-of-track event must occur as the last event in the track.

Meta-events initially defined include:

FF 00 02 ssss Sequence Number

This optional event, which must occur at the beginning of a track, before any nonzero
delta-times, and before any transmittable MIDI events, specifies the number of a
sequence. In a format 2 MIDI file, it is used to identify each "pattern" so that a "song"
sequence using the Cue message to refer to the patterns. If the ID numbers are
omitted, the sequences' locations in order in the file are used as defaults. In a format 0
or 1 MIDI file, which only contain one sequence, this number should be contained in the
first (or only) track. If transfer of several multitrack sequences is required, this must be
done as a group of format 1 files, each with a different sequence number.

FF 01 len text Text Event
Any amount of text describing anything. It is a good idea to put a text event right at the
beginning of a track, with the name of the track, a description of its intended
orchestration, and any other information which the user wants to put there. Text
events may also occur at other times in a track, to be used as lyrics, or descriptions of
cue points. The text in this event should be printable ASCII characters for maximum
interchange. However, other character codes using the high-order bit may be used for
interchange of files between different programs on the same computer which supports
an extended character set. Programs on a computer which does not support non-ASCII
characters should ignore those characters.

Meta event types 01 through 0F are reserved for various types of text events, each of
which meets the specification of text events(above) but is used for a different purpose:

FF 02 len text Copyright Notice

Contains a copyright notice as printable ASCII text. The notice should contain the
characters (C), the year of the copyright, and the owner of the copyright. If several
pieces of music are in the same MIDI file, all of the copyright notices should be placed
together in this event so that it will be at the beginning of the file. This event should be
the first event in the first track chunk, at time 0.

Standard MIDI Files 1.0 9

FF 03 len text Sequence/Track Name

If in a format 0 track, or the first track in a format 1 file, the name of the sequence.
Otherwise, the name of the track.

FF 04 len text Instrument Name
A description of the type of instrumentation to be used in that track. May be used with
the MIDI Prefix meta-event to specify which MIDI channel the description applies to, or
the channel may be specified as text in the event itself.

FF 05 len text Lyric

A lyric to be sung. Generally, each syllable will be a separate lyric event which begins
at the event's time.

FF 06 len text Marker
Normally in a format 0 track, or the first track in a format 1 file. The name of that
point in the sequence, such as a rehearsal letter or section name ("First Verse", etc.).

FF 07 len text Cue Point
A description of something happening on a film or video screen or stage at that point in
the musical score ("Car crashes into house", "curtain opens", "she slaps his face", etc.)

FF 20 01 cc MIDI Channel Prefix
The MIDI channel (0-15) contained in this event may be used to associate a MIDI
channel with all events which follow, including System Exclusive and meta-events.
This channel is "effective" until the next normal MIDI event (which contains a channel)
or the next MIDI Channel Prefix meta-event. If MIDI channels refer to "tracks", this
message may help jam several tracks into a format 0 file, keeping their non-MIDI data
associated with a track. This capability is also present in Yamaha's ESEQ file format.

FF 2F 00 End of Track
This event is not optional. It is included so that an exact ending point may be specified
for the track, so that it has an exact length, which is necessary for tracks which are
looped or concatenated.

FF 51 03 tttttt Set Tempo, in microseconds per MIDI quarter-note

This event indicates a tempo change. Another way of putting "microseconds per
quarter-note" is "24ths of a microsecond per MIDI clock". Representing tempos as time
per beat instead of beat per time allows absolutely exact long-term synchronization with
a time-based sync protocol such as SMPTE time code or MIDI time code. This amount
of accuracy provided by this tempo resolution allows a four-minute piece at 120 beats
per minute to be accurate within 500 usec at the end of the piece. Ideally, these events
should only occur where MIDI clocks would be located — this convention is intended to
guarantee, or at least increase the likelihood, of compatibility with other
synchronization devices so that a time signature/tempo map stored in this format may
easily be transferred to another device.

FF 54 05 hr mn se fr ff SMPTE Offset

This event, if present, designates the SMPTE time at which the track chunk is supposed
to start. It should be present at the beginning of the track, that is, before any nonzero
delta-times, and before any transmittable MIDI events. The hour must be encoded with
the SMPTE format, just as it is in MIDI Time Code. In a format 1 file, the SMPTE
Offset must be stored with the tempo map, and has no meaning in any of the other

10 Standard MIDI Files 1.0

tracks. The ff field contains fractional frames, in 100ths of a frame, even in SMPTE-
based tracks which specify a different frame subdivision for delta-times.

FF 58 04 nn dd cc bb Time Signature

The time signature is expressed as four numbers. nn and dd represent the numerator
and denominator of the time signature as it would be notated. The denominator is a
negative power of two: 2 represents a quarter-note, 3 represents an eighth-note, etc.
The cc parameter expresses the number of MIDI clocks in a metronome click. The bb
parameter expresses the number of notated 32nd-notes in what MIDI thinks of as a
quarter-note (24 MIDI Clocks). This was added because there are already multiple
programs which allow the user to specify that what MIDI thinks of as a quarter-note (24
clocks) is to be notated as, or related to in terms of, something else.

Therefore, the complete event for 6/8 time, where the metronome clicks every three
eighth-notes, but there are 24 clocks per quarter-note, 72 to the bar, would be (in hex):

 FF 58 04 06 03 24 08

That is, 6/8 time (8 is 2 to the 3rd power, so this is 06 03), 36 MIDI clocks per dotted-
quarter (24 hex!), and eight notated 32nd-notes per MIDI quarter note.

FF 59 02 sf mi Key Signature
 sf = -7: 7 flats
 sf = -1: 1 flat
 sf = 0: key of C
 sf = 1: 1 sharp
 sf = 7: 7 sharps
 mi = 0: major key
 mi = 1: minor key

FF 7F len data Sequencer-Specific Meta-Event

Special requirements for particular sequencers may use this event type: the first byte
or bytes of data is a manufacturer ID (these are one byte, or, if the first byte is 00, three
bytes). As with MIDI System Exclusive, manufacturers who define something using
this meta-event should publish it so that others may know how to use it. After all, this
is an interchange format. This type of event may be used by a sequencer which elects to
use this as its only file format; sequencers with their established feature-specific
formats should probably stick to the standard features when using this format.

Standard MIDI Files 1.0 11

Program Fragments and Example MIDI Files

Here are some of the routines to read and write variable-length numbers in MIDI Files. These
routines are in C, and use getc and putc, which read and write single 8-bit characters
from/to the files infile and outfile.

WriteVarLen (value)
register long value;
{
 register long buffer;

 buffer = value & 0x7f;
 while ((value >>= 7) > 0)
 {
 buffer <<= 8;
 buffer |= 0x80;
 buffer += (value & 0x7f);
 }

 while (TRUE)
 {
 putc(buffer,outfile);
 if (buffer & 0x80)
 buffer >>= 8;
 else
 break;
 }
}

doubleword ReadVarLen ()
{
 register doubleword value;
 register byte c;

 if ((value = getc(infile)) & 0x80)
 {
 value &= 0x7f;
 do
 {
 value = (value << 7) + ((c = getc(infile)) & 0x7f);
 } while (c & 0x80);
 }
 return (value);
}

12 Standard MIDI Files 1.0

As an example, MIDI Files for the following excerpt are shown below. First, a format 0 file is
shown, with all information intermingled; then, a format 1 file is shown with all data separated
into four tracks: one for tempo and time signature, and three for the notes. A resolution of 96
"ticks" per quarter note is used. A time signature of 4/4 and a tempo of 120, though implied,
are explicitly stated.

The contents of the MIDI stream represented by this example are broken down here:

Delta Time (dec) Event Code (hex) Other Bytes (dec) Comment
 0 FF 58 04 04 02 24 08 4 bytes: 4/4 time, 24 MIDI clocks/click,
 8 32nd notes/24 MIDI clocks
 0 FF 51 03 500000 3 bytes: 500,000 µsec per quarter-note
 0 C0 5 Ch. 1, Program Change 5
 0 C1 46 Ch. 2, Program Change 46
 0 C2 70 Ch. 3, Program Change 70
 0 92 48 96 Ch. 3 Note On #48, forte
 0 92 60 96 Ch. 3 Note On #60, forte
 96 91 67 64 Ch. 2 Note On #67, mezzo-forte
 96 90 76 32 Ch. 1 Note On #76, piano
 192 82 48 64 Ch. 3 Note Off #48, standard
 0 82 60 64 Ch. 3 Note Off #60, standard
 0 81 67 64 Ch. 2 Note Off #67, standard
 0 80 76 64 Ch. 1 Note Off #76, standard
 0 FF 2F 00 Track End

The entire format 0 MIDI file contents in hex follows.

First, the header chunk:

 4D 54 68 64 MThd
 00 00 00 06 chunk length
 00 00 format 0
 00 01 one track
 00 60 96 per quarter-note

Standard MIDI Files 1.0 13

Then, the track chunk. Its header, followed by the events (notice that running status is used in
places):

 4D 54 72 6B MTrk
 00 00 00 3B chunk length (59)

 Delta-time Event Comments
 00 FF 58 04 04 02 18 08 time signature
 00 FF 51 03 07 A1 20 tempo
 00 C0 05
 00 C1 2E
 00 C2 46
 00 92 30 60
 00 3C 60 running status
 60 91 43 40
 60 90 4C 20
 81 40 82 30 40 two-byte delta-time
 00 3C 40 running status
 00 81 43 40
 00 80 4C 40
 00 FF 2F 00 end of track

A format 1 representation of the file is slightly different.

First, its header chunk:

 4D 54 68 64 MThd
 00 00 00 06 chunk length
 00 01 format 1
 00 04 four tracks
 00 60 96 per quarter-note

Then the track chunk for the time signature/tempo track. Its header, followed by the events:

 4D 54 72 6B MTrk
 00 00 00 14 chunk length (20)

 Delta-time Event Comments
 00 FF 58 04 04 02 18 08 time signature
 00 FF 51 03 07 A1 20 tempo
 83 00 FF 2F 00 end of track

Then, the track chunk for the first music track. The MIDI convention for note on/off running
status is used in this example:

 4D 54 72 6B MTrk
 00 00 00 10 chunk length (16)

 Delta-time Event Comments
 00 C0 05
 81 40 90 4C 20
 81 40 4C 00 Running status: note on, vel = 0
 00 FF 2F 00 end of track

14 Standard MIDI Files 1.0

Then, the track chunk for the second music track:

 4D 54 72 6B MTrk
 00 00 00 0F chunk length (15)

 Delta-time Event Comments
 00 C1 2E
 60 91 43 40
 82 20 43 00 running status
 00 FF 2F 00 end of track

Then, the track chunk for the third music track:

 4D 54 72 6B MTrk
 00 00 00 15 chunk length (21)

 Delta-time Event Comments
 00 C2 46
 00 92 30 60
 00 3C 60 running status
 83 00 30 00 two-byte delta-time, running status
 00 3C 00 running status
 00 FF 2F 00 end of track

Calculating Delta Times:

Now here’s an example of how cumulative delta time gets converted into milliseconds.
In the simplest case, there are 2 pieces of information needed:

1) The SMF Header Chunk defines a "division" which is delta ticks per quarter note. (eg.,
96 = 96 ppq) (Ref: pg. 4, SMF 1.0)

2) The Tempo setting, which is a non-MIDI data Meta Event typically found at time delta
time 0 in the first track of an SMF. If it isn't specified, tempo is assumed to be 120 bpm.
Tempo is expressed as microseconds per quarter note. (eg., 500000 = 120 bpm). (Ref:
pgs. 5,9, SMF 1.0)

To convert delta-time ticks into milliseconds, you simply do a straightforward algebraic
calculation:

Time (in ms.) = (Number of Ticks) * (Tempo (uS/qn) / Div (ticks/qn)) / 1000

As an example, if the Set Tempo value were 500000 uS per qn, and the Division were 96 ticks
per qn, then the amount of time at 6144 Ticks into the SMF would be:

Time = 6144 * (500000/96) / 1000
 = 32000 milliseconds

The above example is a very simple case. In practice, SMFs can contain multiple Set Tempo
Meta Events spaced throughout the file, and in order to calculate a correct elapsed time for any
Tick, a running calculation needs to be performed.

Note that while the Time Signature is not needed to perform the above calculation, Time
Signature is needed, however, if the elapsed time is desired for a particular Bar/Beat value. As
with Set Tempo changes, the Time Signature can change throughout an SMF, and a running
calculation is usually necessary to determine a correct elapsed time for any Bar/Beat.

General MIDI System Level 1

Published by:
The MIDI Manufacturers Association

Los Angeles, CA

PLEASE SEE MMA PUBLICATION “General MIDI System Level 1 Developer
Guidelines” (1996) FOR ADDITIONAL RECOMMENDATIONS AND
CLARIFICATIONS RELATED TO THIS SPECIFICATION.

MMA0007 / RP003

Copyright © 1991, 1994 MIDI Manufacturers Association Incorporated

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED IN ANY FORM OR BY ANY MEANS,
ELECTRONIC OR MECHANICAL, INCLUDING INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT
PERMISSION IN WRITING FROM THE MIDI MANUFACTURERS ASSOCIATION.

MMA
POB 3173
La Habra CA 90632-3173

General MIDI System Level 1 1

GM System - Overview

This Specification outlines a minimum MIDI configuration of a “General MIDI System” which
defines a certain class of MIDI controlled sound generators. The General MIDI (or GM) System
provides a high degree of compatibility between MIDI synthesizers, and adds the ability to play
songs (in the form of MIDI data) created for any given MIDI synthesizer module that follows
this Specification.

This class of products are intended for broad applications in the music, consumer, and
entertainment markets, due to increased compatibility and unprecedented ease-of-use.

Background

Without this specification, when an end user tries to play back MIDI data on a given set of
MIDI synthesizers the results can vary widely depending on what MIDI synthesizers are
involved and what their capabilities are. The MIDI data has to be specially prepared for those
particular synthesizers and drum machines in order to sound exactly as originally intended.

For example, the sound that plays on MIDI note messages sent over channel one/program
number one is determined by the individual synthesizer manufacturer. However, there usually
is little similarity between program numbers and expected timbres on today’s popular
synthesizers. Other examples are the variability of pitch bend range, octave registration, or the
drum note mapping.

This variety is wonderful for professional users, but can be troublesome for consumers and
music authors. Therefore, it has in the past been virtually impossible to produce MIDI data
that will play on all of the popular MIDI synthesizers. The data had to be made manufacturer
and device specific. This has limited the availability of MIDI data titles to individual
instruments or at best to those of a particular manufacturer.

The main barrier to resolving this problem is that the original MIDI specification does not
specify a “minimum MIDI configuration” or set of capabilities that one could rely on being in a
given synthesizer. A particular MIDI device has no idea what MIDI device is connected to the
other end of its MIDI cable, and until now there was no industry-standard minimum
configuration that manufacturers or authors could use as a reference.

The Solution

This General MIDI System is the solution to that problem. It describes a minimum number of
voices, sound locations, drum note mapping, octave registration, pitch bend range, and
controller usage, thereby defining a given set of capabilities to expect in a given synthesizer
module. This mode will be identified by a logo on the instrument such as the “Compact Disc”
logo shown on all devices supporting the CD standard.

General MIDI is a mode that synthesizers can be switched in and out of to provide a common
“base case.” Higher end products will likely support additional modes of operation and should
not be limited by General MIDI. The General MIDI Specification is also left open to further
extensions (or “levels”) for advanced applications and continued improvements.

2 General MIDI System Level 1

GM System - Level 1 Performance Requirements

General MIDI Sound Generator Requirements

Synthesis/Playback Technology (Sound Source Type):

• Up to the manufacturer.

Number of Voices:

• A minimum of:
 1) 24 fully dynamically allocated voices available simultaneously for both melodic and

percussive sounds; or:
 2) 16 dynamically allocated voices for melody plus 8 for percussion.

MIDI Channels Supported:

• All 16 MIDI channels.
• Each channel can play a variable number of voices (polyphony).
• Each channel can play a different instrument (timbre).
• Key-based Percussion is always on channel 10.

Instruments:

• A minimum of 128 presets for Instruments (MIDI program numbers), conforming to
the "GM Sound Set" (see Table 2)

• A minimum of 47 preset percussion sounds conforming to the "GM Percussion Map"
(see Table 3)

General MIDI Sound Generator Recommended Hardware

• Master Volume control.
• MIDI In connector (Out and Thru connectors are optional).
• Audio Out (2 – left & right) plus Headphones connectors.

General MIDI System Level 1 3

Level 1 Performance Requirements

General MIDI Protocol Implementation Requirements

Note on/Note off:

• Octave Registration: Middle C = MIDI Key 60 (3CH)
• All voices, including percussion, respond to velocity
• Voices dynamically allocated (notes/drums can re-attack using free voices)

Controller Changes:
 Controller # Description
 1 Modulation
 7 Volume
 10 Pan
 11 Expression
 64 Sustain
 121 Reset All Controllers
 123 All Notes Off

 Registered Parameter # Description
 0 Pitch Bend Sensitivity
 1 Fine Tuning
 2 Coarse Tuning

Channel Messages:

• Channel Pressure (Aftertouch)
• Pitch Bend (default range = ±2 semitones)

Default Settings:

• Bend="0", Volume="100" (0-127), Controllers "normal"

4 General MIDI System Level 1

GM System - Additional Messages

General MIDI System Messages

In addition to the above already-defined MIDI messages, there is a defined set of Universal
Non-Real Time SysEx messages for turning General MIDI on and off at a sound module
(should it have more than one mode of operation):

• Turn General MIDI System On: F0 7E <device ID> 09 01 F7

 F0 7E Universal Non-Real Time SysEx header
 <device ID> ID of target device (suggest using 7F: Broadcast)
 09 sub-ID #1 = General MIDI message
 01 sub-ID #2 = General MIDI On
 F7 EOX

• Turn General MIDI System Off: F0 7E <device ID> 09 02 F7

 F0 7E Universal Non-Real Time SysEx header
 <device ID> ID of target device (suggest using 7F: Broadcast)
 09 sub-ID #1 = General MIDI message
 02 sub-ID #2 = General MIDI Off
 F7 EOX

General MIDI System Level 1 5

GM System - Level 1 Sound Set

General MIDI Sound Set Groupings:
(all channels except 10)

Prog # Instrument Group Prog # Instrument Group
1-8 Piano 65-72 Reed
9-16 Chromatic Percussion 73-80 Pipe
17-24 Organ 81-88 Synth Lead
25-32 Guitar 89-96 Synth Pad
33-40 Bass 97-104 Synth Effects
41-48 Strings 105-112 Ethnic
49-56 Ensemble 113-120 Percussive
57-64 Brass 121-128 Sound Effects

Table 1

General MIDI Sound Set:
(MIDI Program Numbers 1 – 128; all channels except 10)

Prog # Instrument
1. Acoustic Grand Piano
2. Bright Acoustic Piano
3. Electric Grand Piano
4. Honky-tonk Piano
5. Electric Piano 1
6. Electric Piano 2
7. Harpsichord
8. Clavi
9. Celesta
10. Glockenspiel
11. Music Box
12. Vibraphone
13. Marimba
14. Xylophone
15. Tubular Bells
16. Dulcimer
17. Drawbar Organ
18. Percussive Organ
19. Rock Organ
20. Church Organ
21. Reed Organ
22. Accordion
23. Harmonica
24. Tango Accordion
25. Acoustic Guitar (nylon
26. Acoustic Guitar (steel)
27. Electric Guitar (jazz)
28. Electric Guitar (clean)
29. Electric Guitar (muted
30. Overdriven Guitar
31. Distortion Guitar
32. Guitar harmonics

Prog # Instrument
33. Acoustic Bass
34. Electric Bass (finger)
35. Electric Bass (pick)
36. Fretless Bass
37. Slap Bass 1
38. Slap Bass 2
39. Synth Bass 1
40. Synth Bass 2
41. Violin
42. Viola
43. Cello
44. Contrabass
45. Tremolo Strings
46. Pizzicato Strings
47. Orchestral Harp
48. Timpani
49. String Ensemble 1
50. String Ensemble 2
51. SynthStrings 1
52. SynthStrings 2
53. Choir Aahs
54. Voice Oohs
55. Synth Voice
56. Orchestra Hit
57. Trumpet
58. Trombone
59. Tuba
60. Muted Trumpet
61. French Horn
62. Brass Section
63. SynthBrass 1
64. SynthBrass 2

Prog # Instrument
65. Soprano Sax
66. Alto Sax
67. Tenor Sax
68. Baritone Sax
69. Oboe
70. English Horn
71. Bassoon
72. Clarinet
73. Piccolo
74. Flute
75. Recorder
76. Pan Flute
77. Blown Bottle
78. Shakuhachi
79. Whistle
80. Ocarina
81. Lead 1 (square)
82. Lead 2 (sawtooth)
83. Lead 3 (calliope)
84. Lead 4 (chiff)
85. Lead 5 (charang)
86. Lead 6 (voice)
87. Lead 7 (fifths)
88. Lead 8 (bass + lead)
89. Pad 1 (new age)
90. Pad 2 (warm)
91. Pad 3 (polysynth)
92. Pad 4 (choir)
93. Pad 5 (bowed)
94. Pad 6 (metallic)
95. Pad 7 (halo)
96. Pad 8 (sweep)

Prog # Instrument
97. FX 1 (rain)
98. FX 2 (soundtrack)
99. FX 3 (crystal)
100. FX 4 (atmosphere)
101. FX 5 (brightness)
102. FX 6 (goblins)
103. FX 7 (echoes)
104. FX 8 (sci-fi)
105. Sitar
106. Banjo
107. Shamisen
108. Koto
109. Kalimba
110. Bag pipe
111. Fiddle
112. Shanai
113. Tinkle Bell
114. Agogo
115. Steel Drums
116. Woodblock
117. Taiko Drum
118. Melodic Tom
119. Synth Drum
120. Reverse Cymbal
121. Guitar Fret Noise
122. Breath Noise
123. Seashore
124. Bird Tweet
125. Telephone Ring
126. Helicopter
127. Applause
128. Gunshot

Table 2

6 General MIDI System Level 1

Level 1 Sound Set

General MIDI Percussion Map:
(Channel 10)

MIDI Key Drum Sound MIDI Key Drum Sound MIDI Key Drum Sound
 35 Acoustic Bass Drum 51 Ride Cymbal 1 67 High Agogo
 36 Bass Drum 1 52 Chinese Cymbal 68 Low Agogo
 37 Side Stick 53 Ride Bell 69 Cabasa
 38 Acoustic Snare 54 Tambourine 70 Maracas
 39 Hand Clap 55 Splash Cymbal 71 Short Whistle
 40 Electric Snare 56 Cowbell 72 Long Whistle
 41 Low Floor Tom 57 Crash Cymbal 2 73 Short Guiro
 42 Closed Hi Hat 58 Vibraslap 74 Long Guiro
 43 High Floor Tom 59 Ride Cymbal 2 75 Claves
 44 Pedal Hi-Hat 60 Hi Bongo 76 Hi Wood Block
 45 Low Tom 61 Low Bongo 77 Low Wood Block
 46 Open Hi-Hat 62 Mute Hi Conga 78 Mute Cuica
 47 Low-Mid Tom 63 Open Hi Conga 79 Open Cuica
 48 Hi Mid Tom 64 Low Conga 80 Mute Triangle
 49 Crash Cymbal 1 65 High Timbale 81 Open Triangle
 50 High Tom 66 Low Timbale

Table 3

General MIDI System Level 1 7

GM System - Level 1 Detailed Explanation

GM Sound Set

For music authors, one of the most frustrating parts of the original MIDI specification was the
lack of sound definitions. For example, where is the piano sound on this instrument (i.e. what
is the program number)? The solution lies in a "sound-set-to-Program-Change-number"
mapping that is specific to the General MIDI System.

This mapping only needs to take effect while operating inside a General MIDI System, and
would otherwise let manufacturers organize sounds in any way they wish. In short, while
operating inside a General MIDI System, this map takes effect – in any other mode, the
manufacturer could present the sounds in any manner desired.

The General MIDI Sound Set (instrument and percussion maps) is shown in Tables 2 and 3.
This mapping describes the MIDI Program Change numbers used to select sounds under the
General MIDI System. The instrument would map these General MIDI program numbers to
its own internal organization. MIDI Program numbers can be changed in real time during
play.

GM Sound Definitions

General MIDI does not recommend any particular method of synthesis or playback. Each
manufacturer should be free to express their own ideas and personal aesthetics when it comes
to picking the exact timbres for each preset. In particular, the names in parentheses after
each of the synth leads, pads, and sound effects are intended as guides.

Therefore, to promote consistency in song playback across a range of sound modules, a set of
guidelines for General MIDI Score authors and Instrument manufacturers will be produced.

GM Performance Notes

For all instruments, the Modulation Wheel (Controller #1) will change the nature of the sound
in the most natural (expected) way. i.e. depth of LFO; change of timbre; add more tine sound;
etc.)

There are other MIDI messages currently pending in the MMA and JMSC that will become
part of a General MIDI Level 2 Specification.

8 General MIDI System Level 1

GM System - Logos

Rules for Application

The MMA and JMSC have approved the following design for a logo which will indicate a
product that conforms to this specification.

For sound generators, GM is intended to allow the user to play back any score developed for
GM without user intervention. This means a GM sound source must support all of the features
described in that section without requiring any modification by the user. Only products which
meet these requirements should have the GM logo.

Software, such as sequencer and notation programs, games, or other applications which create
or play MIDI music, may also display a GM logo, as long as the product does not interfere with
the performance of required GM data when used with a compatible sound source. For example,
software which allows the user to select different sounds on playback should include a resident
list of the GM sounds. In addition, any software which is GM compatible must properly play
back ⎯ without modification ⎯ all controller settings and other required messages which may
be found in a MIDI file or otherwise performed via MIDI.

GM Logo Variations

The logo is available from the MMA upon application and signing of a license agreement. The
agreement specifies the terms, conditions and restrictions for application of a GM logo to
products, packaging, and marketing materials. For details please refer to the current license
agreement.

GM System Logo - This version of the logo can be applied to sound
generators, applications software (games, sequencers, etc.), and scores
(MIDI data) which conform to the GM System Level 1 Specification.

GM Sound Set - This version of the logo is intended for display with sound-
sets (samples or patches) designed to modify a specific sound source to be
GM System Level 1 compatible.

MIDI Show Control 1.1

Including 2-Phase Commit Enhancements

RP002/RP014

Copyright © 1991, 1994, 1995 MIDI Manufacturers Association

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED IN ANY FORM OR BY ANY MEANS,
ELECTRONIC OR MECHANICAL, INCLUDING INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT
PERMISSION IN WRITING FROM THE MIDI MANUFACTURERS ASSOCIATION.

MMA
POB 3173
La Habra CA 90632-3173

MIDI Show Control 1.1 1

MIDI Show Control (MSC) 1.1

1. Introduction

The purpose of MIDI Show Control is to allow MIDI systems to communicate with and to control
dedicated intelligent control equipment in theatrical, live performance, multi-media, audio-visual and
similar environments.

Applications may range from a simple interface through which a single lighting controller can be
instructed to GO, STOP or RESUME, to complex communications with large, timed and synchronized
systems utilizing many controllers of all types of performance technology.

The set of commands is modeled on the command structure of currently existing computer memory
lighting, sound and show control systems. The intent is that translation between the MIDI Show Control
specification and dedicated controller commands will be relatively straightforward, being based on the
same operating principles. On the other hand, it has been assumed that translation will involve more
than table look-up, and considerable variation will be found in data specifications and other
communications details. In essence, MIDI Show Control is intended to communicate easily with devices
which are designed to execute the same set or similar sets of operations.

2 MIDI Show Control 1.1

2. General Structure
2.1. Universal System Exclusive Format

MIDI Show Control uses a single Universal Real Time System Exclusive ID number (sub-ID #1 = 02H)
for all Show commands (transmissions from Controller to Controlled Device).

A guiding philosophy behind live performance control is that failures of individual Controlled Devices
should not impair communications with other Controlled Devices. This principle may be implemented in
either "open-loop" or "closed-loop" variations.

In open-loop control, no command responses from Controlled Device to Controller are specified or
required. Open-loop control represents the most economical usage of communications bandwidth, and is
fundamental to MIDI usage. MIDI Show Control includes open-loop practice for consistency with other
Channel and System messages.

Closed-loop control, on the other hand, expects specified responses from Controlled Devices. Closed-loop
practice requires more intelligent devices and uses more communications bandwidth, but provides more
exact coordination between Controller and Controlled Devices. For closed-loop applications, MIDI Show
Control uses the two-phase commit protocol, described in Sections 4.5 and 6.

In this version of Show Control, no command responses (from Controlled Device to Controller) are
specified or required in order to optimize bandwidth requirements, system response time and system
reliability in the event of communication difficulties with one or more Controlled Device. The guiding
philosophy behind live performance control is that, as much as possible, failures of individual Controlled
Devices should not impair communications with other Controlled Devices. This concept has been a part
of MIDI design from the beginning and MIDI Show Control continues to use an "open-loop" design in
order that standard MIDI practices may continue to be successfully utilized in applications using all
types of standard Channel and System messages. However, a "closed-loop" version of Show Control has
been discussed and may be created in the future.

In this document, all transmitted characters are represented in hex unless otherwise noted. The initials
"msc" will be used to denote the new MIDI Show Control sub-ID #1 (= 02H). The format of a Show
Control message is as follows:

F0 7F <device_ID> <msc> <command_format> <command> <data> F7

Notes:
1. No more than one command can be transmitted in a SysEx.
2. The total number of bytes in a Show Control message should not exceed 128.
3. SysEx messages must always be closed with an F7H as soon as all currently prepared

information has been transmitted.

2.2. Device Identification

<device_ID> is always a DESTINATION device address.

Commands are most often addressed to one device at a time. For example, to command two lighting
consoles to GO, transmit:

F0 7F <device_ID=1> <msc> <command_format=lighting> <GO> F7
F0 7F <device_ID=2> <msc> <command_format=lighting> <GO> F7

MIDI Show Control 1.1 3

 <device_ID> values:
 00-6F Individual IDs
 70-7E Group IDs 1-15 (optional)
 7F "All-call" ID for system wide broadcasts

Every device must be able to respond to both an individual and the "all-call" (7FH) ID. The group
addressing mode is optional. A device may respond to one or more individual ID and one or more group
ID. Both <device_ID> and <command_format> of a message must match the device_ID and command_
format of a controlled device before the message is recognized.

If two separate controlled devices responding to the same command_format are set to respond to the
same device_ID then only one message need be sent for both to respond. The "all-call" device_ID (7FH) is
used for system wide "broadcasts" of identical commands to devices of the same command_format (or to
all devices when used with <command_format=all-types>; see 4.1, below.)

Before fully interpreting the <device_ID> byte, parsing routines will need to look at <msc> and
<command_format>, both of which follow <device_ID>, in order to first determine that the SysEx
contains Show Control commands in the appropriate format.

A typical system will consist of at least one Controller attached to one or more Controlled Devices. It is
possible for the same machine to be both a Controlled Device and a Controller at the same time. In this
case, the machine may act as a translator, interpreter or converter of Show Control commands.
According to its programmed instructions, the receipt of one type of command may result in the
transmission of similar or different commands.

It is also a possibility that multiple Controller outputs could be merged and distributed to one or more
Controlled Devices.

Optionally, Controlled Devices may be able to transmit (from a MIDI Out connector) MIDI Show Control
commands of the type required by themselves to produce a desired result. In this
condition, the Controlled Device will be transmitting a valid MIDI Show Control command but may not
necessarily be doing so as a Controller. This is useful when the Controller has the ability (through MIDI
In) to capture valid MIDI Show Control messages in order to conveniently create and edit the database
of messages needed for the performances being controlled. In this case, the Controlled Device will be
transmitting to the Controller, but only for the purposes of capturing messages to store and retransmit
during performance.

Another application allowed by the transmission of Show Control commands by Controlled Devices is
the slaving of multiple Devices of similar type. For example, if a dedicated lighting console transmits a
Show Control command to "GO" when its GO button is pressed, then any other dedicated lighting
console that obeys MIDI Show Control commands will also GO if it receives MIDI from the first console.
In this way, many Controlled Devices may be controlled by another Controlled Device acting as the
Controller. Interconnection would follow the same pattern as the normal Controller to Controlled Device
arrangement.

2.3. Command_Formats

A command_format is a message byte from a Controller to a Controlled Device which identifies the
format of the following Command byte. Each command_format has a format code between 01H and 7FH,
and must be followed by a valid command byte. (Command_format 00H is reserved for extensions, and
not all codes are currently defined.)

4 MIDI Show Control 1.1

2.4. Commands

A command is a message byte from a Controller to a Controlled Device. Each command has a command
code between 01H and 7FH, and may be followed by one or more data bytes, up to a total message length
of 128 bytes. (Command 00H is reserved for extensions, and not all codes are currently defined.)

2.5. Extension Sets

Command_Format 00H and Command 00H are reserved for two extension sets:

00 01 1st command_format or command at 1st extension level
00 00 01 1st command_format or command at 2nd extension level

At this time, no extended functions have been defined. Nevertheless, to accommodate future extensions
to MIDI Show Control, parsing routines must always check for extensions wherever command_format or
command fields are encountered in data.

2.6. Data Length

The only restriction to the number of data bytes sent is that the total number of message bytes must not
be more than 128. The actual data format of the transmitted message will be defined by the
manufacturer of the Controlled Device. This means that the Controller (or the programmer of the
Controller) must know the exact data format of the Controlled Device. This information will be
manufacturer and equipment specific, so it is important that every manufacturer publish a thorough
and unambiguous SysEx Implementation document.

Because this specification is intended to accommodate the needs of an extremely wide variety of
equipment and industry needs, from very low cost light boards to the most complex audio/video
multimedia extravaganzas, the data formats used in simpler systems will be considerably shorter and
less complex than in comprehensive equipment. Data are transmitted
in the order of most generic information first, with null character delimiters between each group of data
bytes in order to signify the sending of progressively less generic data. For instance, simple Controlled
Devices may look only at the basic data and discard the rest.

As an example, a complex Controlled Device may be able to process cue numbers with a large number of
decimal point delineated subsections i.e. "235.32.7.8.654" If a Controller transmits this cue number to a
simple Controlled Device that can only process numbers in the form "xxx.x", then the simple Device can
either ignore these data or else respond to them in a predictable manner, such as processing cue number
"235.3."

As a further example, cue number data may be transmitted calling up cue 235.3 then followed by a
delimiter and data specifying cue list 36.6 and followed by a further delimiter specifying cue path 59. If
the Device supports multiple cue lists but not multiple cue paths, it would process cue 235.3 in cue list
36.6 (or 36) and ignore the cue path data, simply using the current or default cue path.

Looking at the situation in the opposite manner, if simple cue number data were transmitted to a Device
capable of processing all cue data, it would respond by processing that cue number in the current or
default cue list using the current or default cue path.

MIDI Show Control 1.1 5

3. Standard Specifications

Since data often contain some form of Cue Number designation, a "Standard" specification for
transmission of Cue Number and related data provides consistency and saves space in the detailed data
descriptions (Section 5).

3.1. Cue Numbers

When a Cue Number is sent as data, the following additional information fields may or may not be
included as part of a complete "Cue Number" description: Q_list and Q_path. Q_list prescribes in which
one of all currently Open Cue Lists the Q_number is to be placed or manipulated. Q_path prescribes
from which Open Cue Path within all available cue storage media the Q_number is to be retrieved. The
data include these information fields in the following order:

<Q_number> 00 <Q_list> 00 <Q_path> F7

Between each separate field a delimiter byte of the value 00H is placed as shown to indicate the end of
the previous field and beginning of the next. It is acceptable to send only:

<Q_number> F7
 or
<Q_number> 00 <Q_list> F7.

Controlled Devices should be able to accept more than one set of delimiter bytes, including directly
before F7H, and even if no Q_number, Q_list or Q_path data are sent. Data are always terminated by
F7H.

Q_number, Q_list and Q_path are expressed as ASCII numbers 0-9 (encoded as 30H-39H) with the
ASCII decimal point character (2EH) used to delineate subsections. In the example above, cue 235.6 list
36.6 path 59 would be represented by the hex data:

32 33 35 2E 36 00 33 36 2E 36 00 35 39 F7

Decimal points should be separated by at least one digit, but Controlled Devices should accommodate
the error of sending two or more decimal points together. Any number of decimal point delineated
subsections may be used and any number of digits may be used in each subsection except that the length
of the data must not cause the total length of the MIDI Show Control message to exceed 128 bytes.

Controlled Devices which do not support Q_list and (or Q_path) data must detect the 00H byte
immediately after the Q_number (or Q_list) data and then discard all data until F7H is detected.
Likewise, Controlled Devices which do not support the received number of decimal point delineated
subsections, the received number of digits in a subsection or the total number of received characters in
any field must handle the data received in a predictable and logical manner.

Controlled Devices which support Q_list and/or Q_path will normally default to the current or base
Q_list and Q_path if these fields are not sent with Q_number.

For lighting applications, Q_list optionally defines the Playback or Submaster Controls (0 to 127) with
which the cue corresponds.

It is highly recommended that every manufacturer publish a clear and concise description of their
equipment's response to the above conditions.

6 MIDI Show Control 1.1

3.2. Time Code Numbers

Since data often contain some form of time reference, a "Standard" specification for transmission of time
provides consistency and saves space in the data descriptions.

MIDI Show Control time code and user bit specifications are entirely consistent with the formats used
by MIDI Time Code and MIDI Cueing and are identical to the Standard Time Code format in MIDI
Machine Control 1.0. Some extra flags have been added, but are defined such that if used in the MIDI
Time Code/Cueing environment they would always be reset to zero, and so are completely transparent.

3.2.1. Standard Time Code (Types {ff} And {st})

This is the "full" form of the Time Code specification, and always contains exactly 5 bytes of data.

Two forms of Time Code subframe data are defined:

The first (labeled {ff}), contains subframe data exactly as described in the MIDI Cueing specification i.e.
fractional frames measured in 1/100 frame units.

The second form (labeled {st}) substitutes time code "status" data in place of subframes. For example,
when reading data from tape, it is useful to know whether these are real time code data, or simply time
data updated by tachometer pulses during a high speed wind. In this case, as in other cases of "moving"
time code, subframe data are practically useless, being difficult both to obtain and to transmit in a
timely fashion.

hr mn sc fr (ff|st)

hr = Hours and type: 0 tt hhhhh
 tt = time type (bit format):
 00 = 24 frame
 01 = 25 frame
 10 = 30 drop frame
 11 = 30 frame
 hhhhh = hours (0-23, encoded as 00H-17H)
mn = Minutes: 0 c mmmmmm
 c = color frame bit (copied from bit in time code stream):
 0 = non color frame
 1 = color framed code
 mmmmmm = minutes (0-59, encoded as 00H-3BH)
sc = Seconds: 0 k ssssss
 k = reserved - must be set to zero
 ssssss = seconds (0-59, encoded as 00H-3BH)
fr = Frames, byte 5 ident and sign: 0 g i fffff
 g = sign bit:
 0 = positive
 1 = negative (where signed time code is permitted)
 i = final byte identification bit:
 0 = subframes
 1 = status
 fffff = frames (0-29, encoded as 00H-1DH)

If final byte bit = subframes (i = 0):
 ff = fractional frames: 0 bbbbbbb (0-99, encoded as 00H-63H)

MIDI Show Control 1.1 7

If final byte bit = status (i = 1):
 st = code status bit map: 0 e v d xxxx
 e = estimated code flag bit:
 0 = normal time code
 1 = tach or control track updated code
 v = invalid code bit (ignore if e = 1):
 0 = valid
 1 = invalid (error or not current)
 d = video field identification bit:
 0 = no field information in this frame
 1 = first frame in 4 or 8 field video sequence
 xxxx = reserved bits - must be set to 0000

Drop Frame Notes:

1. When writing time code data, the drop-frame or non-drop-frame status of the data being
written may be overridden by the status of the Controlled Device (i.e. the time code from the
device itself). For example, if the SET_CLOCK data are loaded with a non-drop-frame number
and if the time code on the Controlled Device is drop-frame, then the SET_CLOCK data will
simply be interpreted as a drop-frame number, with no attempt being made to perform any
mathematical transformations.

2. Furthermore, if the above SET_CLOCK number had in fact been loaded with a non-
existent drop-frame number (e.g. 00:22:00:00), then the next higher valid number would have
been used (in this case, 00:22:00:02).

3. Calculation of offsets, or simply the mathematical difference between two time codes, can
cause confusion when one or both of the numbers is drop-frame. For the purposes of this
specification, DROP-FRAME NUMBERS SHOULD FIRST BE CONVERTED TO NON-DROP-
FRAME BEFORE OFFSET CALCULATIONS ARE PERFORMED. Results of an offset
calculation will then be expressed as non-drop-frame quantities.

To convert from drop-frame to non-drop-frame, subtract the number of frames that have been
"dropped" since the reference point 00:00:00:00. For example, to convert the drop-frame number
00:22:00:02 to non-drop-frame, subtract 40 frames, giving 00:21:58:22. The number 40 is
produced by the fact that 2 frames were "dropped" at each of the minute marks 01 through 09,
11 through 19, 21 and 22. (Some manufacturers will prefer to store all internal time codes as a
simple quantity of frames from reference point 00:00:00:00. This reduces calculation complexity,
but does require that conversions are performed at all input or output stages.)

8 MIDI Show Control 1.1

4. Index List

4.1. Command_Formats

Command_formats fall into the categories of General, Specific and All-types. General command_formats
have a least significant nibble equal to 0, except for lighting which is 01H. Specific command_formats
are related to the General command_format with the most significant nibble of the same value, but
represent a more restricted range of functions within the format.

Command_format "All-types" (7FH) is used for system wide "broadcasts" of identical commands to
devices of the same device_ID (or to all devices when used with <device_ID>=All-Call; see 2.2,
above). For example, use of the All-types command_format along with the All-call device_ID allows a
complete system to be RESET with a single message.

Controlled Devices will normally respond to only one command_format besides All-types. Occasionally,
more complex control systems will respond to more than one command_format since they will be in
control of more than one technical performance element. Controllers, of course, should normally be able
to create and send commands in all command_formats, otherwise their usefulness will be limited.

Although it can be seen that a wide variety of potentially dangerous and life-threatening performance
processes may be under MIDI Show Control, the intent of this specification is to allow the user
considerably more exacting and precise control over the type of command_format and command which
will result in the desired result than normally may be provided in a non-electronic cueing situation. The
major advantages to the use of MIDI Show Control in these conditions are:

1. Less likelihood of errors in cueing. Digital communications can be demonstrated to be
extremely reliable in repetitive duty conditions; much more so than tired or
inexperienced stagehands.

2. More precise timing. Likewise, digital communications and computer control can be

consistently accurate in automatic timing sequences and exactly as accurate as their
human operators when under manual control.

IN NO WAY IS THIS SPECIFICATION INTENDED TO REPLACE ANY ASPECT OF NORMAL PERFORMANCE SAFETY
WHICH IS EITHER REQUIRED OR MAKES GOOD SENSE WHEN DANGEROUS EQUIPMENT IS IN USE. MANUAL
CONTROLS SUCH AS EMERGENCY STOPS, DEADMAN SWITCHES, CONFIRMATION ENABLE CONTROLS OR LIKE
SAFETY DEVICES SHALL BE USED FOR MAXIMUM SAFETY.

AUTOMATIC SAFETY DEVICES SUCH AS LIMIT SWITCHES, PROXIMITY SENSORS, GAS DETECTORS, INFRARED
CAMERAS AND PRESSURE AND MOTION DETECTORS SHALL BE USED FOR MAXIMUM SAFETY. MIDI SHOW
CONTROL IS NOT INTENDED TO TELL DANGEROUS EQUIPMENT WHEN IT IS SAFE TO GO: IT IS ONLY
INTENDED TO SIGNAL WHAT IS DESIRED IF ALL CONDITIONS ARE ACCEPTABLE AND IDEAL FOR SAFE
PERFORMANCE. ONLY PROPERLY DESIGNED SAFETY SYSTEMS AND TRAINED SAFETY PERSONNEL CAN
ESTABLISH IF CONDITIONS ARE ACCEPTABLE AND IDEAL AT ANY TIME.

TWO-PHASE COMMIT METHODOLOGY IS EXCEPTIONALLY ERROR-FREE AND CAN BE UTILIZED TO ADD
SAFETY FEATURES TO SHOW CONTROL SYSTEMS; HOWEVER THIS MUST STILL BE IMPLEMENTED ACCORDING
TO THE PARAMETERS OF THIS SPECIFICATION AND ONLY IN ADDITION TO THE ABOVE SAFETY CAVEATS.

MIDI Show Control 1.1 9

Hex command_format Hex command_format

00 reserved for extensions

01 Lighting (General Category)
02 Moving Lights
03 Color Changers
04 Strobes
05 Lasers
06 Chasers

10 Sound (General Category)
11 Music
12 CD Players
13 EPROM Playback
14 Audio Tape Machines
15 Intercoms
16 Amplifiers
17 Audio Effects Devices
18 Equalizers

20 Machinery (General Cat.)
21 Rigging
22 Flys
23 Lifts
24 Turntables
25 Trusses
26 Robots
27 Animation
28 Floats
29 Breakaways
2A Barges

30 Video (General Category)
31 Video Tape Machines
32 Video Cassette Machines
33 Video Disc Players
34 Video Switchers
35 Video Effects
36 Video Character Generators
37 Video Still Stores
38 Video Monitors

40 Projection (General)
41 Film Projectors
42 Slide Projectors
43 Video Projectors
44 Dissolvers
45 Shutter Controls

50 Process Control (Gen.)
51 Hydraulic Oil
52 H2O
53 CO2
54 Compressed Air
55 Natural Gas
56 Fog
57 Smoke
58 Cracked Haze

60 Pyro (General Category)
61 Fireworks
62 Explosions
63 Flame
64 Smoke pots

7F All-types

10 MIDI Show Control 1.1

4.2. Recommended Minimum Sets

MIDI Show Control does not specify an absolute minimum set of commands and data which must be
implemented in each device responding to a given command_format.

However, in order to ease the burden of interfacing between Controllers and Controlled Devices from
different manufacturers, four RECOMMENDED MINIMUM SETS of commands and data have been
created. Once a Controlled Device is specified to conform to a particular Recommended Minimum Set,
then the task of designing a Controller which will successfully operate that device is considerably
simplified.

The currently defined Recommended Minimum Sets are:

1. Simple Controlled Device; no time code; basic data only
2. No time code; full data capability
3. Full time code; full data capability
4. Two phase commit methodology (see Sections 4.5 and 6)

Assignment of any particular command or data to a Recommended Minimum Set may be found in the
far right hand column of the Index List.

Recommended Minimum Sets are in no way intended to restrict the scope of operations supported by
any device. They are offered only in the spirit of a "lowest common denominator".

4.3. General Commands

The following commands are basic to the current implementation of Memory Lighting systems and
probably apply to all dedicated theatrical show control systems in a general sense. Although it is not
required that Controlled Devices incorporate all of these commands, it is highly recommended:

 Number
 of data Recommended
Hex Command bytes Minimum Sets
00 reserved for extensions
01 GO variable 1 2 3
02 STOP variable 1 2 3
03 RESUME variable 1 2 3
04 TIMED_GO variable 2 3
05 LOAD variable 2 3
06 SET 4 or 9 2 3
07 FIRE 1 2 3
08 ALL_OFF 0 2 3
09 RESTORE 0 2 3
0A RESET 0 2 3
0B GO_OFF variable 2 3

4.4. Sound Commands

The following commands, in addition to the above, are basic to the current implementation of Computer
Controlled Sound Memory Programming Systems and are widely used by Show Control Systems in more
comprehensive applications. It is recommended that Controllers support the transmission of these
commands:

MIDI Show Control 1.1 11

 Number
 of data Recommended
Hex command bytes Minimum Sets
10 GO/JAM_CLOCK variable 3
11 STANDBY_+ variable 2 3
12 STANDBY_- variable 2 3
13 SEQUENCE_+ variable 2 3
14 SEQUENCE_- variable 2 3
15 START_CLOCK variable 3
16 STOP_CLOCK variable 3
17 ZERO_CLOCK variable 3
18 SET_CLOCK variable 3
19 MTC_CHASE_ON variable 3
1A MTC_CHASE_OFF variable 3
1B OPEN_CUE_LIST variable 2 3
1C CLOSE_CUE_LIST variable 2 3
1D OPEN_CUE_PATH variable 2 3
1E CLOSE_CUE_PATH variable 2 3

4.5. Two-Phase Commit Commands

The following commands extend MIDI show control by adding two-phase commit (2PC) methodology.
This methodology is not required for any form of MIDI show control operation. However, it does add
data checking and error detection to the basic MIDI show control semantics. Suggested uses of these
command extensions include situations where a show is being completely monitored and controlled from
a central location, or performance conditions where safety requires additional checking and redundancy
in the show control mechanisms.

Section 6 describes the two-phase commit methodology as applied in this specification. Review of that
section is recommended before reading the specific two-phase commit message descriptions found in
Section 5.

N.B. the two-phase commit methodology requires bi-directional communications. In MIDI, this means
adding a data path where the MIDI OUT lines of controlled device consoles feed into the MIDI IN of the
MIDI show control system that is acting as controller for show operations.

 Number
 of data Recommended
Hex Command bytes Minimum Sets
20 STANDBY variable ---4
21 STANDING_BY variable ---4
22 GO_2PC variable ---4
23 COMPLETE variable ---4
24 CANCEL variable ---4
25 CANCELLED 6 ---4
26 ABORT 6 ---4

12 MIDI Show Control 1.1

5. Detailed Command And Data Descriptions

00 Reserved For Extensions

01 GO

01 GO
<Q_number> optional; required if Q_list is sent
00 delimiter
<Q_list> optional; required if Q_path is sent
00 delimiter
<Q_path> optional

Starts a transition or fade to a cue. Transition time is determined by the cue in the Controlled Device. If
no Cue Number is specified, the next cue in numerical sequence GOes. If a Cue Number is specified, that
cue GOes. Transitions "run" until complete. If the Controller wishes to define the transition time,
TIMED_GO should be sent.

In Controlled Devices with multiple Cue Lists, if no Cue Number is Specified, the next cues in numerical
order and numbered identically and which are in Open Cue Lists GO. If Q_number is sent without
Q_list, all cues with a number identical to Q_number and which are in Open Cue Lists GO.

02 STOP

 02 STOP
 <Q_number> optional; required if Q_list is sent
 00 delimiter
 <Q_list> optional; required if Q_path is sent
 00 delimiter
 <Q_path> optional

Halts currently running transition(s). If no Cue Number is specified, all running transitions STOP. If a
Cue Number is specified, only that single, specific transition STOPs, leaving all others unchanged.

03 RESUME

03 RESUME
<Q_number> optional; required if Q_list is sent
00 delimiter
<Q_list> optional; required if Q_path is sent
00 delimiter
<Q_path> optional

Causes STOPped transition(s) to continue running. If no Cue Number is specified, all STOPped
transitions RESUME. If a Cue Number is specified, only that transition RESUMEs, leaving all others
unchanged.

MIDI Show Control 1.1 13

04 TIMED_GO

04 TIMED_GO
hr mn sc fr ff Standard Time Specification
<Q_number> optional; required if Q_list is sent
00 delimiter
<Q_list> optional; required if Q_path is sent
00 delimiter
<Q_path> optional

Starts a timed transition or fade to a cue. If no Cue Number is specified, the next cue in numerical
sequence GOes. If a Cue Number is specified, that cue GOes. Transitions "run" until complete.

Time is Standard Time Specification with subframes (type {ff}), providing anything from "instant" to 24
hour transitions. If a Controlled Device does not support TIMED_GO it should GO instead, ignoring the
time data but processing Cue Number data normally. If the transition time desired is the preexisting
default cue time, GO should be sent instead of TIMED_GO.

Rules for Controlled Devices with multiple Cue Lists are the same as for GO, above.

05 LOAD

05 LOAD
<Q_number> required
00 delimiter
<Q_list> optional; required if Q_path is sent
00 delimiter
<Q_path> optional

Places a cue into a standby position. Cue Number must be specified. LOAD is useful when the cue
desired takes a finite time to access. LOAD is sent in advance so that the cue will GO instantly.

In Controlled Devices with multiple Cue Lists, if Q_number is sent without Q_list, all cues with a
number identical to Q_number and which are in Open Cue Lists LOAD to standby.

06 SET

06 SET
cc cc Generic Control Number, LSB first
vv vv Generic Control Value, LSB first
hr mn sc fr ff Standard Time Specification, optional

Standard Generic Control Numbers for Lighting

0-127 Sub masters
128-129 Masters of the first playback
130-131 Masters of the second playback
... (etc.)
190-191 Masters of the 32nd playback
192-223 Speed controllers for the 32 playbacks

224-255 Chase sequence masters
256-287 Chase sequence speed masters
510 Grand Master for all channels
511 General speed controller for all fades
512-1023 Individual channel levels

14 MIDI Show Control 1.1

Defines the value of a Generic Control. The Generic Control and its value are each specified by a 14 bit
number. A Controlled Device may treat virtually any of its variables, attributes, rates, levels, modes,
functions, effects, subs, channels, switches, etc. as Generic Controls which may be sent values via SET.
Optionally, the time it takes the Generic Control to achieve its value may be sent.

Time is Standard Time Specification with subframes (type {ff}), providing anything from "instant" to 24
hour transitions. If a Controlled Device does not support times in SET, it should ignore time data.

07 FIRE

07 FIRE
mm Macro Number

Triggers a pre-programmed keyboard Macro. The Macro is defined by a 7 bit number. The Macros
themselves are either programmed at the Controlled Device, or loaded via MIDI file dump facilities
using the ASCII Cue Data format or any method applicable to the Device.

08 ALL_OFF

08 ALL_OFF

Independently turns all functions and outputs off without changing the control settings. Operating
status prior to ALL_OFF may be reestablished by RESTORE.

09 RESTORE

09 RESTORE

Reestablishes operating status to exactly as it was prior to ALL_OFF.

0A RESET

0A RESET

Terminates all running cues, setting all timed functions to an initialized state equivalent to a newly
powered-up condition and loads the first cue of each applicable cue list into the appropriate standby
positions. In other words, RESET stops the show without arbitrarily changing any control values and
loads the top of the show to standby.

It should be decided by the manufacturer of the Controlled Device whether or not RESET should
automatically open all CLOSEd_CUE_LISTs and CLOSEd_CUE_PATHs and this decision should be
stated clearly in the device's MIDI Implementation documentation.

0B GO_OFF

0B GO_OFF
<Q_number> optional; required if Q_list is sent
00 delimiter
<Q_list> optional; required if Q_path is sent
00 delimiter
<Q_path> optional

MIDI Show Control 1.1 15

Starts a transition or fade of a cue to the off state. Transition time is determined by the cue in the
Controlled Device.

If no Cue Number is specified, the current cue GOes OFF. If a Cue Number is specified, that cue GOes
OFF.

In Controlled Devices with multiple Cue Lists, if no Cue Number is Specified, all currently active cues in
Open Cue Lists GO OFF. If Q_number is sent without Q_list, all cues with a number identical to
Q_number and which are in Open Cue Lists GO OFF.

For compatibility with Controlled Devices which do not automatically replace an existing cue with a new
cue upon receipt of the GO command, Controllers should optionally prompt the programmer to
simultaneously create a GO_OFF command.

10 GO/JAM_CLOCK

10 GO/JAM_CLOCK
<Q_number> optional; required if Q_list is sent
00 delimiter
<Q_list> optional; required if Q_path is sent
00 delimiter
<Q_path> optional

Starts a transition or fade to a cue simultaneous with forcing the clock time to the 'Go Time' if the cue is
an 'Auto Follow' cue. Transition time is determined by the cue in the Controlled Device.

If no Cue Number is specified, the next cue in numerical sequence GOes and the clock of the appropriate
Cue List JAMs to that cue's time. If the next cue in numerical sequence is a 'Manual' cue (i.e. if it has
not been stored with a particular 'Go Time,' making it an 'Auto Follow' cue), the GO/JAM_CLOCK
command is ignored.

If a Cue Number is specified, that cue GOes and the clock of the appropriate Cue List JAMs to the cue's
time unless the cue is 'Manual' in which case no change occurs.

Rules for Controlled Devices with multiple Cue Lists are the same as for GO, above.

11 STANDBY_+

 11 STANDBY_+
 <Q_list> optional

Places into standby position the next cue in numerical order after the cue currently in standby.

If Q_list is not sent, the Open Cue List containing the next cue in numerical order is used. If more than
one Open Cue List have cues with an identical number then those cues will move to their respective
standby positions.

If Q_list is sent in Standard Cue Number Form, only the next cue in the Cue List specified moves to the
standby position.

16 MIDI Show Control 1.1

12 STANDBY_-

12 STANDBY_-
<Q_list> optional

Places into standby position the previous cue in numerical order prior to the cue currently in standby.

If Q_list is not sent, the Open Cue List containing the previous cue in numerical order is used. If more
than one Open Cue List have cues with an identical number then those cues will move to their
respective standby positions.

If Q_list is sent in Standard Form, only the previous cue in the Cue List specified moves to the standby
position.

13 SEQUENCE_+

13 SEQUENCE_+
<Q_list> optional

Places into standby position the next parent cue in numerical sequence after the cue currently in
standby.

'Parent' refers to the integer value of the cue's number prior to the first decimal point (the "most
significant number") For example, if cue 29.324.98.7 was in standby and the cues following were 29.325,
29.4, 29.7, 29.9.876, 36.7, 36.7.832, 36.8, 37., and 37.1, then cue 36.7 would be loaded to standby by
SEQUENCE_+.

If Q_list is not sent, the Open Cue List containing the next cue in parental sequence is used. If more
than one Open Cue List have cues with a completely identical number then those cues will move to their
respective standby positions.

If Q_list is sent in Standard Form, only the next parent cue in the Cue List specified moves to the
standby position.

14 SEQUENCE_-

14 SEQUENCE_-
<Q_list> optional

Places into standby position the lowest numbered parent cue in the previous numerical sequence prior to
the cue currently in standby.

'Parent' refers to the integer value of the cue's number prior to the first decimal point (the "most
significant number") For example, if cue 37.4.72.18.5 was in standby and the cues preceding were
29.325, 29.4, 29.7, 29.9.876, 36.7, 36.7.832, 36.8, 37., and 37.1, then cue 36.7 would be loaded to standby
by SEQUENCE_-.

If Q_list is not sent, the Open Cue List containing the previous parental sequence is used. If more than
one Open Cue List have cues with identical lowest numbered parent cues in previous parental sequence
then those cues will move to their respective standby positions.

If Q_list is sent in Standard Form, only the first parent cue in the previous sequence of the Cue List
specified moves to the standby position.

MIDI Show Control 1.1 17

15 START_CLOCK

15 START_CLOCK
<Q_list> optional

Starts the 'Auto Follow' clock timer. If the clock is already running, no change occurs. The clock
continues counting from the time value which it contained while it was stopped.

If Q_list is not sent, the clocks in all Open Cue Lists Start simultaneously.

If Q_list is sent in Standard Form, only the clock in that Cue List Starts.

16 STOP_CLOCK

16 STOP_CLOCK
<Q_list> optional

Stops the 'Auto Follow' clock timer. If the clock is already stopped, no change occurs. While the clock is
stopped, it retains the time value which it contained at the instant it received the STOP command.

If Q_list is not sent, the clocks in all Open Cue Lists Stop simultaneously.

If Q_list is sent in Standard Form, only the clock in that Cue List stops.

17 ZERO_CLOCK

17 ZERO_CLOCK
<Q_list> optional

Sets the 'Auto Follow' clock timer to a value of 00:00:00:00.00, whether or not it is running. If the clock is
already stopped and Zeroed, no change occurs. ZERO_CLOCK does not affect the clock's running status.

If Q_list is not sent, the clocks in all Open Cue Lists Zero simultaneously.

If Q_list is sent in Standard Form, only the clock in that Cue List Zeros.

18 SET_CLOCK

18 SET_CLOCK
hr mn sc fr ff Standard Time Specification
<Q_list> optional

Sets the 'Auto Follow' clock timer to a value equal to the Standard Time sent, whether or not it is
running. SET_CLOCK does not affect the clock's running status.

If Q_list is not sent, the clocks in all Open Cue Lists Set simultaneously.

If Q_list is sent in Standard Form, only the clock in that Cue List Sets.

18 MIDI Show Control 1.1

19 MTC_CHASE_ON

19 MTC_CHASE_ON
<Q_list> optional

Causes the 'Auto Follow' clock timer to continuously contain a value equal to incoming MIDI Time Code.
If no MTC is being received when this command is received, the clock remains in its current running or
stopped status until MTC is received, at which time the clock continuously exhibits the same time as
MTC. If MTC becomes discontinuous, the clock continues to display the last valid MTC message value
received.

If Q_list is not sent, the clocks in all Open Cue Lists Chase simultaneously. If Q_list is sent in Standard
Form, only the clock in that Cue List Chases.

1A MTC_CHASE_OFF

1A MTC_CHASE_OFF
<Q_list> optional

Causes the 'Auto Follow' clock timer to cease Chasing incoming MIDI Time Code. When
MTC_CHASE_OFF is received, the clock returns to running or stopped status according to its operating
status at the instant MTC_CHASE_ON was received.

MTC_CHASE_OFF does not change the clock time value; i.e. if the clock is stopped, it retains the last
valid MTC message value received (or simply the most recent time in the clock register); if the clock is
running, it continues to count from the most recent time in its register.

If Q_list is not sent, the clocks in all Open Cue Lists stop Chasing simultaneously.

If Q_list is sent in Standard Form, only the clock in that Cue List stops Chasing.

1B OPEN_CUE_LIST

1B OPEN_CUE_LIST
<Q_list> required

Makes a Cue List available to all other commands and includes any cues it may contain in the current
show.

When OPEN_CUE_LIST is received, the specified Cue List becomes active and cues in it can be accessed
by normal show requirements. Q_list in Standard Form must be sent.

If the specified Cue List is already Open or if it does not exist, no change occurs.

1C CLOSE_CUE_LIST

1C CLOSE_CUE_LIST
<Q_list> required

Makes a Cue List unavailable to all other commands and excludes any cues it may contain from the
current show.

MIDI Show Control 1.1 19

When CLOSE_CUE_LIST is received, the specified Cue List becomes inactive and cues in it cannot be
accessed by normal show requirements, but the status of the cues in the list does not change. Q_list in
Standard Form must be sent.

If the specified Cue List is already Closed or if it does not exist, no change occurs.

1D OPEN_CUE_PATH

1D OPEN_CUE_PATH
<Q_path> required

Makes a Cue Path available to all other MIDI Show Control commands and to all normal show cue path
access requirements as well.

When OPEN_CUE_PATH is received, the specified Cue Path becomes active and cues in it can be
accessed by the Controlled Device. Q_path in Standard Form must be sent.

If the specified Cue Path is already Open or if it does not exist, no change occurs.

1E CLOSE_CUE_PATH

1E CLOSE_CUE_PATH
<Q_path> required

Makes a Cue Path unavailable to all other MIDI Show Control commands and to all normal show cue
path access requirements as well.

When CLOSE_CUE_PATH is received, the specified Cue Path becomes inactive and cues in it cannot be
accessed by the Controlled Device. Q_path in Standard Form must be sent.

If the specified Cue Path is already Closed or if it does not exist, no change occurs.

20 STANDBY

20 STANDBY
cc cc Checksum, LSB first
nn nn Sequence number, LSB first
d1 d2 Data, 4 7-bit cue data values
d3 d4 (see Section 6.8)
<Q_number> required
00 delimiter
<Q_list> optional; required if Q_path is sent
00 delimiter
<Q_path> optional

Normally sent by a controller. Places the identified cue in a standby (ready to execute) state. The
controlled device that receives this message must respond with either a STANDING_BY or an ABORT
message. If for any reason, the controlled device is unable to ready the identified cue for execution, it
must respond with an ABORT message.

The d1, d2, d3, and d4 values in the STANDBY message can be used by a controlled device as additional
information about the cue to be executed. Use of these values by controlled devices is optional.
However, controllers must always include these values in STANDBY messages. Whenever correct d1 ...
d4 values are unknown, controllers must send zeros.

20 MIDI Show Control 1.1

The d1 ... d4 values sent in a STANDBY message must match those sent in the subsequent GO_2PC
message. If this is not true, the controlled device may respond to the GO_2PC message with an ABORT
message containing one of the "invalid dn cue data value" status codes. See Section 6.8 for additional
information about and usage examples for the d1 ... d4 values.

The controlled device has two seconds in which to respond to a STANDBY message with a
STANDING_BY message. If the controller does not receive a STANDING_BY message in this time, it
proceeds as if an ABORT message was sent.

21 STANDING_BY

21 STANDING_BY
cc cc Checksum, LSB first
nn nn Sequence number, LSB first
hr mm sc fr ff Max time required to execute the cue

(Standard Time Specification format)
<Q_number> optional; required if Q_list is sent
00 delimiter
<Q_list> optional; required if Q_path is sent
00 delimiter
<Q_path> optional

Normally sent by a controlled device. Indicates that the identified cue is ready to be executed. Note: the
cue is identified by Q_number, Q_list, and Q_path. Although the d1, d2, d3, and d4 fields in the
STANDBY message may modify how the cue is to be executed, they do not identify the cue.

"Ready to be executed," means, among other things, that the cue is known to the controlled device, that
it is in memory or otherwise fully ready for immediate execution, and that the controlled device is fully
capable of performing the actions dictated by the cue. The cue must be identified by returning the
sequence number found in the STANDBY message that initiated the transaction. Optionally, the cue
may be identified by both the sequence number and the <Q_number> <Q_list> and <Q_path>
parameters. If both are used, they must agree completely with the values found in the STANDBY
message. Otherwise, the response is treated as an ABORT message.

The STANDING_BY message includes the maximum time required to execute the cue. Later, the
controller will use this time to verify that the controlled device does not fail during execution of the cue.
The maximum time may be significantly larger than the actual time required, but cannot be smaller. If
operator action is required as part of cue execution, then the maximum time must account for the time
spent waiting for that operator action.

22 GO_2PC

22 GO_2PC
cc cc Checksum, LSB first
nn nn Sequence number, LSB first
d1 d2 Data, 4 7-bit cue data values
d3 d4 (see Section 6.8)
<Q_number> required
00 delimiter
<Q_list> optional; required if Q_path is sent
00 delimiter
<Q_path> optional

MIDI Show Control 1.1 21

Normally sent by a controller. Starts the execution of the identified cue. Note: the cue is identified by
Q_number, Q_list, and Q_path. Although the d1, d2, d3, and d4 fields in the GO_2PC message may
modify how the cue will be executed, they do not identify the cue.

When execution of the cue is complete, the controlled device responds with a COMPLETE message. If
for any reason before or during the execution of the cue a condition requiring termination of cue
execution occurs, the controlled device immediately sends an ABORT message.

Before receipt of the GO_2PC message, the controlled device must have received a STANDBY message
and responded to that message with a STANDING_BY message for the cue identified by <Q_number>
etc. fields in the GO_2PC message. If this is not true, the controlled device must respond to the GO_2PC
message with an ABORT message containing the "not standing by" status.

The d1, d2, d3, and d4 values in the GO_2PC message can be used by a controlled device as additional
information about the cue being executed. Use of these values by controlled devices is optional.
However, controllers must always include these values in GO_2PC messages. Whenever correct d1 ... d4
values are unknown, controllers must send zeros.

The d1 ... d4 values sent in a GO_2PC message must match those sent in the previous STANDBY
message. If this is not true, the controlled device may respond to the GO_2PC message with an ABORT
message containing one of the "invalid dn cue data value" status codes. See Section 6.8 for additional
information about and usage examples for the d1 ... d4 values.

The controlled device is not required to "remember" previous STANDBY - STANDING_BY exchanges
forever. However, the controlled device should be capable of "remembering" enough such exchanges to
make delivery of "not standing by" ABORTs due to "forgotten" exchanges extremely rare. Manufactures
should document the maximum number of STANDBY - STANDING_BY exchanges their controlled
device can "remember" concurrently. A "remembered" STANDBY - STANDING_BY exchange is cleared
upon receipt of the GO_2PC. Re-execution of the cue must begin with a new STANDBY -
STANDING_BY exchange.

In the previously sent STANDING_BY message, the controlled device has informed the controller of the
maximum time required to execute this cue. The controlled device has this much time in which to
process the cue and send a COMPLETE or ABORT message. If neither of these is received in this period
of time, the controller proceeds as if an ABORT message was sent.

23 COMPLETE

23 COMPLETE
cc cc Checksum, LSB first
nn nn Sequence number, LSB first
<Q_number> optional; required if Q_list is sent
00 delimiter
<Q_list> optional; required if Q_path is sent
00 delimiter
<Q_path> optional

Normally sent by a controlled device. Indicates that the identified cue has completed execution. Note:
the cue is identified by Q_number, Q_list, and Q_path. Although the d1, d2, d3, and d4 fields in the
GO_2PC message may have modified how the cue was executed, they do not identify the cue.

The cue must be identified by returning the sequence number found in the GO_2PC message that
initiated the transaction. Optionally, the cue may be identified by both the sequence number and the
<Q_number> <Q_list> and <Q_path> parameters. If both are used, they must agree completely with the
values found in the GO_2PC message. Otherwise, the response is treated as an ABORT message.

22 MIDI Show Control 1.1

24 CANCEL

24 CANCEL
cc cc Checksum, LSB first
nn nn Sequence number, LSB first
<Q_number> required
00 delimiter
<Q_list> optional; required if Q_path is sent
00 delimiter
<Q_path> optional

Normally sent by a controller. Indicates that the cue operation named by the <Q_number> etc. fields,
should be terminated. Before receipt of the CANCEL message, at least a STANDBY and possibly a
GO_2PC message also must have been received. If this is not true, the controlled device must respond
with a CANCELLED message containing the "not standing by" status.

If the previous operation was a STANDBY - STANDING_BY exchange (without a GO_2PC message),
the previous exchange is simply "forgotten." Re-execution of the cue must begin with a new STANDBY -
STANDING_BY exchange.

If the previous operation was a GO_2PC for which a COMPLETE has not yet been sent, the operation
can be:

 1. Completed -- run to a normal completion,
 2. Paused -- stopped but awaiting further execution,
 3. Terminated -- stopped without possibility of further execution, or

4. Reversed -- returned to the state present before execution of the GO_2P message was begun.

Which of these four actions is taken depends on the equipment being controlled and the circumstances
under which the CANCEL message is received. Some controlled devices may always perform one of the
four actions. Other controlled devices may select the action performed under program control.
Manufacturers should document the actions taken when a CANCEL message is received by their
controlled devices.

If a controlled device decides to complete a canceled cue, then it must send both a CANCELLED
message containing the "completing" status code and a COMPLETE message. The CANCELLED
message is sent in immediate response to the CANCEL message. The COMPLETE message is sent when
the cue is actually completed.

Cues that are Paused by a CANCEL message can be resumed by execution of a STANDBY -
STANDING_BY - GO_2PC message exchange. Otherwise, execution of a STANDBY - STANDING_BY -
GO_2PC message exchange will cause complete re-execution of the cue.

A CANCEL message must be responded to with a CANCELLED message or an ABORT message. An
ABORT message response is allowed only when a "checksum error" is detected in the CANCEL message.
In all other cases, the response must be a CANCELLED message. If a CANCEL message is not
responded to within two seconds, processing will proceed as if an ABORT response message has been
sent.

MIDI Show Control 1.1 23

25 CANCELLED

25 CANCELLED
cc cc Checksum, LSB first
s1 s2 Status code, [status = (s1*4)+(s2*512)]
nn nn Sequence number, LSB first
 Standard Status codes for Canceled messages
80 04 completing
80 08 paused
80 0C terminated
80 10 reversed
80 24 not standing by
80 28 manual override in progress

Normally sent by a controlled device. Indicates that a CANCEL message has been honored or was
irrelevant. The status code indicates the disposition of the cue. Valid status codes are: "not standing
by," "manual override in progress," "completing," "paused," "terminated," and "reversed."

The status code "not standing by" indicates that the cue named by <Q_number> etc. is neither
"remembered" as having been represented by a prior STANDBY - STANDING_BY exchange nor
currently being executed. Beyond the obvious causes of this condition, this may occur because the
controlled device has already completed execution of the GO_2PC message by the time the CANCEL
message is received.

Each of the "completing," "paused," "terminated," and "reversed" status codes indicate the disposition of
the cue following execution of the CANCEL message. When a GO_2PC message has not been received
before a CANCEL message, the status code in the CANCELLED message is always "terminated."

The "manual override in progress" status code indicates that the local operator at the controlled device
has taken over control of cue execution. Devices may be designed to ignore all two-phase commit MIDI
show control messages whenever the local operator is manually initiating cue actions. See Section 6.4.5
for additional information on this design feature.

The sequence number found in the CANCEL message that initiated the transaction must be used to
identify the CANCEL message being responded to. No optional parameters are permitted at this time.

26 ABORT

26 ABORT
cc cc Checksum, LSB first
s1 s2 Status code, [status = (s1*4)+(s2*512)]
nn nn Sequence number, LSB first
 Standard Status codes for Abort messages
00 00 unknown/undefined error
80 00 checksum error
80 20 *timeout
80 24 not standing by
80 28 manual override initiated
80 30 manual override in progress
80 40 deadman interlock not established
80 44 required safety interlock not established
80 50 unknown <Q_number>
80 54 unknown <Q_list>
80 58 unknown <Q_path>
80 5C too many cues active

24 MIDI Show Control 1.1

80 60 cue out of sequence
80 64 invalid d1 cue data value
80 68 invalid d2 cue data value
80 6C invalid d3 cue data value
80 70 invalid d4 cue data value
80 90 manual cueing of playback medium required
80 A0 power failure in controlled device subsystem
80 B0 reading new show cues from disk
10 04 (meaning is dependent on Command_Format)
10 08 (meaning is dependent on Command_Format)
10 0C (meaning is dependent on Command_Format)
10 10 (meaning is dependent on Command_Format)
10 14 (meaning is dependent on Command_Format)
10 18 (meaning is dependent on Command_Format)
10 1C (meaning is dependent on Command_Format)
11 04 (meaning is dependent on Command_Format)
11 08 (meaning is dependent on Command_Format)
12 04 (meaning is dependent on Command_Format)

Normally sent by a controlled device. Indicates a failure to execute a STANDBY, GO_2PC, or CANCEL
message. The status code indicates the most severe reason for the failure to execute the previous
message. See Section 6.7 for a complete discussion of status codes. The sequence number found in the
message that initiated the transaction must be used to identify the STANDBY, GO_2PC, or CANCEL
message being ABORTed. N.B. there may be additional, less severe, reasons why the message could not
be executed. Thus, correcting the error condition reported by the status code may not be sufficient to
allow execution.

Status code severity is related to the ease with which the condition can be corrected. For example, the
"deadman interlock not established" status code is less severe than the "motor failure" status code. The
former can be corrected by immediate human action. Correcting the latter condition may require
disassembly of the motor.

The "manual override in progress" status code indicates that the local operator at the controlled device
has taken over control of cue execution. Devices may be designed to ignore all two-phase commit MIDI
show control messages whenever the local operator is manually initiating cue actions. See Section 6.4.5
for additional information on this design feature.

MIDI Show Control 1.1 25

6. Two-Phase Commit Details

Two-phase commit (2PC) is a transaction coordination methodology. It is a solution to the generals'
paradox, which essentially asks the question, "How can several generals conspire to communicate in a
way that guarantees that they all march together or none march at all, regardless of errors in their
communications channels?" The two-phase commit solution to the generals' paradox involves two
distinct phases of communications. In the first phase, all parties agree on what is to be done. In the
second phase, all parties initiate the previously agreed upon actions and report their results.

Two-phase commit methodology is very similar to the cue coordination methodology employed by
theatrical technicians on vocal cue calling systems. The first phase is the 'standby' phase. The second
phase is the 'go' phase.

6.1. Controllers And Controlled Devices

In two-phase commit communications, Controllers send STANDBY, GO_2PC, and CANCEL messages.
Controlled devices send STANDING_BY, COMPLETE, CANCELLED, and ABORT messages.

6.2. Human Operators

This specification assumes that a human operator normally is present at every 2PC controller and
controlled device. A person serving in this capacity is called the "local operator." The local operator may
simply monitor operations. Or, the local operator may perform safety verification functions, such as
activating a deadman interlock switch. The local operator also may initiate a manual override of a
controlled device as described in Section 6.4.5.

Presumably, the local operator effects his or her control via some type of console or other user interface.
This interface is called the "local operator interface."

6.3. Relating Two-Phase Commit To Other MSC Messages

There are several important differences between Two-Phase Commit (2PC) and the other MIDI Show
Control (MSC) messages. Understanding these differences is important to successfully building a
product to use either message set. Also, the differences strongly suggest that any one controlled device
should NOT support both message sets. So, understanding the differences is important to choosing the
best message set to use in any given controlled device.

The MSC/2PC differences start with fundamental principles. MSC is dynamic and immediate: do this
now, this way. 2PC is planned, scripted: do this sequence just like it was designed and no other way.
MSC is well suited to rock and roll concerts, where there is no script and to media elements which have
no safety implications, such as lighting, sound and video. 2PC is better suited to tightly scripted shows
and to media elements which have safety implications, such as machinery, pyrotechnics and process
control.

The MSC message set includes many messages that cause some kind of mechanical or electrical action
by the controlled device, for example: GO, SET, FIRE, STOP, and RESUME. This large collection of
action messages is required to communicate all the various desired results, with consistent behavior
across a large variety of controlled devices. Appropriate behavior is ensured through explicit
conformance to each action message defined in the MSC specification.

The 2PC message set contains just one action producing message, GO_2PC. Precisely what results are
produced by any given GO_2PC message is determined by a script of cues stored in the controlled device,

26 MIDI Show Control 1.1

and how the controlled device interprets that script of cues. Ensuring the desired behavior is a matter of
selecting appropriate controlled devices and loading them with cue scripts that produce the correct
results. Then, the controller must be programmed to issue 2PC messages in ways that properly
coordinate the cue scripts in all the controlled devices.

The major advantage of MSC over 2PC is faster responses to requested actions and simpler system
configuration. The faster response comes from two facts. First, MSC requires just one message to
produce an action. 2PC requires at least three messages. Second, 2PC includes a delay, up to two
seconds, between the request for an action and initiation of that action.

2PC has two advantages over MSC. First, 2PC can coordinate the actions of multiple controlled devices
with an extremely high degree of certainty. Second, 2PC has error detection and recovery semantics
built in to the protocol.

6.4. Two-Phase Commit Message Sequences

6.4.1. Normal Message Sequences

In the absence of any error conditions, four messages are required to execute a single cue in the two-
phase commit protocol. The following table shows the messages, their ordering, the senders and
receivers for each message, and the purpose of the message. The first and second messages comprise the
'standby' phase mentioned in Section 6. The third and fourth messages comprise the 'go' phase.

Order Message Sender Purpose

1st STANDBY controller to notify controlled device a cue is
 about to be executed (initiates a cue
 execution sequence)

2nd STANDING_BY controlled device notify controller that the controlled
 device is ready and able to execute the
 cue described in a previous STANDBY
 message (also informs controller of
 time required to execute the cue)

3rd GO_2PC controller instruct controlled device to begin
 execution of cue identified in previous
 STANDBY - STANDING_BY message
 pair

4th COMPLETE controlled device notify controller that the controlled
 device has completed execution of the
 cue described in a previous GO_2PC
 message (terminates a cue execution
 sequence)

A controller may send STANDBY and GO_2PC messages to multiple controlled devices in any cue
number order deemed appropriate by the controller. However, care must be taken with respect to the
cue number order of messages sent to a single controlled device. Controlled devices may require a
specific ordering of the cues that they execute. Failure to observe this ordering will result in the
controlled device responding to one or more STANDBY messages with ABORT messages containing the
"cue out of sequence" status code.

MIDI Show Control 1.1 27

A controller must never make assumptions about the specific cue number order in which
STANDING_BY, COMPLETE, or CANCELLED messages will be received from a controlled device.
Such assumptions are clearly invalid for COMPLETE messages, since their order will depend on the
time required to execute individual cues. Controlled devices are equally free to send STANDING_BY
and CANCELLED messages in any order deemed appropriate, so long as the 2 second timeout interval
rules discussed below are observed.

STANDBY messages should normally be sent at least 2 seconds before the anticipated time for sending
the GO_2PC message. Otherwise, there may be insufficient time to discover that the controlled device
has not responded with a STANDING_BY message within the 2 second timeout interval. It is
recognized that sending STANDBY messages 2 seconds before GO_2PC messages may not always be
possible. However, controller designers also must be aware of the risks associated with failure to
observe the "2 second standby" rule, endeavor to observe the rule whenever possible, and be prepared for
the consequences of failure to observe it.

6.4.2. Response Timeouts

The controller must record the cue execution time reported in each STANDING_BY message and
timeout COMPLETE messages that are not received in 125% of that interval. The additional 25%
allows for different timing mechanisms in the controller and controlled devices.

Timeout of response messages from a controlled device to the controller is a key element of the two-
phase commit methodology. The timeout process requires that STANDING_BY and CANCELLED
messages be returned within 2 seconds of delivery of the corresponding STANDBY or CANCEL message,
and that COMPLETE messages be returned within the timeout interval described above.

Failure to meet timeout requirements signals the controller that the controlled device has become
inoperative (at least in terms of its ability to participate in the two-phase commit protocol). Controllers
that detect a timeout condition must treat the event as if an ABORT message had been delivered to the
controller by the controlled device.

To simplify internal representation of the timeout event, a “timeout" status code is defined. Although no
transmitted ABORT message will contain the "timeout" status code, controllers may represent a timeout
condition using an internally generated and processed ABORT message that contains the "timeout"
status code.

6.4.3. Exceptional Condition Handling

The ABORT, CANCEL, and CANCELLED two-phase commit messages are used only when exceptional
conditions occur. The following table describes the purposes, senders and receivers for these messages.

Message Sender Purpose

ABORT controlled device notify controller of exceptional condition

CANCEL controller to instruct controlled device to discard previous
 instructions

CANCELLED controlled device confirms discarding of previous instructions

Whenever a controlled device detects an exceptional condition (something that prevents normal
execution of a cue), it reports the condition to the controller using an ABORT message. In addition to a
status code value that describes the exceptional condition, the ABORT message contains the sequence

28 MIDI Show Control 1.1

number of the STANDBY or GO_2PC message that cannot be properly executed because of the
exceptional condition.

Note: controlled devices cannot send ABORT messages except in response to STANDBY, GO_2PC,
CANCEL messages. From the point of view of the larger presentation, the exceptional condition does
not become significant until its existence prevents proper cue execution. However, controlled devices
may still initiate local actions the instant the exceptional condition is detected.

In some cases, controllers may respond to ABORT messages by retransmitting the message that
resulted in the ABORT message. This is discussed in Section 6.4.4. Otherwise, controllers respond to
ABORT messages by displaying an informative message for their operators to read. The text of the
operator message is based on the status code found in the ABORT message. In addition, CANCEL
messages are sent for all relevant cues. Typically, CANCEL messages are sent for all cues for which
STANDBY messages have been sent and all cues for which GO_2PC messages have been sent.

The general delivery of CANCEL messages informs all currently active controlled devices that an
unusual condition exists and that show cue sequencing is about to enter a special recovery phase. This
information is important. For example, controlled devices that do not usually allow out-of-sequence cue
execution may allow it after receipt of a CANCEL message.

Sometimes, an ABORT message does not indicate the beginning of special recovery actions. For
example, the ABORT message sent by the electric eye controlled device in Section 6.9.1 only indicates
that an anticipated event has not occurred yet. In cases like this, the controller does not initiate general
delivery of CANCEL messages upon receipt of an ABORT message.

After relevant activities are canceled, several courses of action are possible. The simplest possibility is
that the human operators at the controlled devices must intervene to take whatever actions are possible
to continue the performance. A more sophisticated controller might provide for contingency cue scripts
that are activated either manually or automatically when an ABORT condition is reported.

The key aspects of the two-phase commit protocol involved in error handling are:

1. Provision of the ABORT message to signal the presence of an exceptional condition and something
about the nature of that condition (via the status code),

2. Usage of the CANCEL message to inform all participating controlled devices of a deviation from

the error-free cue execution sequence, and

3. The large set of predefined status code values. These definitions allow the controller to display an

informative description of the problem to the controller operator, who is most likely responsible
for recovering from the problem.

Controllers send CANCEL messages for cues that have been mentioned only in STANDBY messages
and for cues that are already executing in response to GO_2PC messages. When the cue named in a
CANCEL message has been mentioned only in a STANDBY message, the controlled device simply
"forgets" that the STANDBY message was ever received. Things are much more complicated when a
CANCEL message mentions a cue that is already executing.

Because cue execution is already in progress, the number of possible shutdown options grows
dramatically. Picking a definitive right thing to do becomes much more difficult. Ultimately, the
designers of two-phase commit controlled devices must consider carefully the choices between
completing, pausing, terminating, and reversing cues whose execution has already been initiated. In
addition, placing the cancel action choice in the hands of the controlled device operator should be
considered.

MIDI Show Control 1.1 29

If a currently executing cue is moving something out of harm's way, then completing that cue is probably
the correct choice. If the currently executing cue is moving something into an uncertain situation, the
cue probably should be paused, terminated, or reversed. Which of the three is best depends on the
equipment and the performance situation specifics.

How cancellation of active cues is mechanically handled is the key safety component of the two-phase
commit methodology. Since each situation is different, casting absolute requirements into this
specification is impossible. All this specification can do is provide for the most complete set of options
possible. Beyond that, controlled device designers are warned that special attention must be given to
the cancellation of active cues.

6.4.4. Handling Exceptional Conditions With Message Retries

Under some circumstances, the controller may choose to retry transmission of a message that resulted in
an exceptional condition, instead of requesting operator intervention. The most common case where
retrying the message would be useful is an ABORT message with a "checksum error" status. Chances
are good that the retransmitted message will arrive correctly. Other conditions may be recoverable via
retransmission. Controller designers may choose to retry under any conditions that they think
appropriate, and to retry as many times as seem useful. When retries are performed, however, they
must be does as described in the remainder of this section.

Under no circumstances shall controlled devices use message retransmission as an exceptional condition
recovery strategy.

Controllers shall retry for an ABORT message by retransmitting the message whose sequence number is
found in the ABORT message. The controller may alter the message before retransmission, if logic
indicates that such changes will improve chances for successful processing by the controlled device. For
example, a controller may attempt retransmissions for ABORT messages with unknown <Q_list>" status
codes. Part of this retransmission logic might involve dropping the <Q_list> datum from the
retransmitted message.

Controllers also my use retransmission as a recovery from “timeout" errors or as part of treating
incoming messages with checksum errors" as ABORT messages (Section 6.5). However, there is no way
for the controller to ask the controlled device to retransmit the last message. Therefore, the controller
must perform the retry by clearing and reestablishing the cue state in the controlled device.

The controller does this by sending CANCEL messages for every cue that the controlled device has
acknowledged via a STANDING_BY message but for which no GO_2PC message has been sent. Then,
the controller resends STANDBY messages for all the just canceled cues. If any of messages sent in this
retransmission process also produces an error, the retransmission process must be considered to be a
failure and operator intervention must be requested.

This "bad message from the controlled device" retry algorithm cannot attempt to clear cues for which
GO_2PC messages have already been sent. To do so would mean stopping cue execution. That function
must involve operator action.

6.4.5. Manual Override Processing

Controlled devices may be designed to ignore all two-phase commit MIDI show control messages
whenever the local operator is manually initiating cue actions. (The "local operator" is described in
Section 6.2.) When in effect, this condition is indicated by the "manual override in progress" status code.
Controlled devices designed in this way must ignore ALL MSC_2PC messages. Selectively ignoring
some messages but not others can cause system failures in the controller sending the messages.

30 MIDI Show Control 1.1

In "manual override" mode, all STANDBY and GO_2PC messages must receive an ABORT message
response containing the "manual override in progress" status code. All CANCEL messages must receive
a CANCELLED message response containing the "manual override in progress" status code. This must
continue until the local operator at the controlled device releases the manual override condition.

When the operator initiates a manual override during execution of a cue that was initiated by a GO_2PC
message, an ABORT message containing the "manual override initiated" status should be sent at the
time when the operator acts. Without delivery of the ABORT message, the controller may time out
execution of the cue. The "manual override initiates" status indicates a change to "manual override"
mode in the controlled device. This is different from the "manual override in progress" status, that
indicates a continuation of an ongoing condition. The controller should appropriately notify its operator.

6.4.6. Waiting For Messages

The two-phase commit MIDI show control protocol is designed so that controlled devices are never
waiting for messages. A controlled device simply accepts a message, executes the actions that the
message requires, and returns a response message. A controlled device is required to "remember" the
STANDBY - STANDING_BY messages exchanges that it has participated in recently, in order to process
properly GO_2PC messages. Yet, strictly speaking, a controlled device is not stalled awaiting a GO_2PC
message because it has previously received a STANDBY message.

One particular advantage of the no-waiting two-phase commit controlled device arrangement is worth
noting. Since controlled devices are never waiting for messages, they are always prepared to accept
manual override instructions from their local operator interfaces. Therefore, even if a controller should
fail, the performance can continue using local manual operation of the individual controlled devices.
(Manual override is described in Section 6.4.5.)

Although a controller by definition must wait for STANDING_BY, COMPLETE, and CANCELLED
messages, two aspects of the waiting process suggest that the waiting cannot hang the controller (render
it incapable of responding to inputs):

1. The amount of time that can elapse in such a wait is limited. The limit is 2 seconds for
STANDING_BY and CANCELLED messages. The limit is variable (based on the contents of the
previous STANDING_BY message) for COMPLETE messages.

2. A controller must be simultaneously waiting for numerous messages whose delivery order is

indeterminate. Therefore, the controller must employ some form of table driven algorithm for
tracking messages that are waiting for responses and detecting failures to receive responses
within the specified limits.

6.5. Checksums

Each two-phase commit message includes a two byte (16 bits, in MIDI 14 data bits) checksum. To
compute the checksum the <command_format> <command> and <data> portions of the message are
treated as an array of two byte values. If there is an uneven number of bytes in the <command_format>
<command> and <data> portions of the message, then an additional byte having the value zero is
appended to the message for the checksum computation. Before the checksum computation, the byte
positions that the checksum itself will occupy are zeroed.

A sum over the array of two byte values is computed. Overflows are ignored. Next, the <device_ID>
byte is added to the sum. Finally, the sum is logically anded to the constant 7F 7Fh (32,639 decimal).
This logical and operation makes the checksum value suitable for transport under MIDI. The resulting
value is the checksum for the message.

MIDI Show Control 1.1 31

The entity receiving a message will verify the correctness of each incoming message by recomputing the
checksum and comparing it with the checksum value received. When a checksum comparison fails for a
controlled device, it will return an ABORT message with a "checksum error" status code. When a
checksum comparison fails for controller, it will proceed as if an ABORT message has been received.
This may mean retrying the message transmission as described in Section 6.4.4.

6.6. Sequence Numbers

Sequence numbers are 14-bit (two MIDI byte) unsigned binary values. For each STANDBY, GO_2PC,
and CANCEL message sent, a controller constructs a unique sequence number between 1 and 16,383.
(The sequence number 0 is reserved for special functions and future protocol extensions.) A controlled
device identifies the cue that its STANDING_BY, COMPLETE, CANCELLED, or ABORT message
references by returning the sequence number received in the original STANDBY, GO_2PC, or CANCEL
message.

Optionally, a controlled device may include explicit cue number information in addition to the sequence
number in the STANDING_BY and COMPLETE messages. However, this information is only used as a
sanity check on the message.

Using sequence numbers in this way permit inclusion of very simple controlled devices (such as safety
interlock sensors) in two-phase commit operations. For example, a gas detector might have no concept
of cues. Whenever a STANDBY message is received it simply checks for gas. It responds with a
STANDING_BY message when gas is not detected, or an ABORT message when gas is detected. It
ignores the <Q_number> etc. fields in the incoming message and simply copies the incoming sequence
number into the response message.

Additionally, sequence numbers simplify response tracking operations in the controller.

6.7. Status Codes

Status codes appear in ABORT and CANCELLED messages. Status codes are two byte unsigned binary
values. So that status codes may be transmitted in accordance with MIDI, the low-order two bits in a
status code value must always be zero. The smallest legal status code value is 4, the largest legal value
is FF FCh (65,532 decimal). In MIDI message descriptions, the status code appears as: s1 s2. Using
unsigned integer arithmetic, the method for converting a status code to the s1 and s2 values, and vice
versa is as follows:

s1 = (status_code /4) & 7F
s2 = (status_code / 512) & 7F
status_code = (s1 * 4) + (s2 * 512)

Each numeric status code value represents an error condition or canceled cue status. There are three
numeric ranges of status codes. The first range is common to all command_format values. (See Section
4.1 for a discussion of command_format values.) Status codes in the first range apply to all types of
MIDI show controllers. All status codes returned in CANCELLED messages fall into the first status
code range.

The second status code range is additionally qualified by the command_format value appearing in the
ABORT message. The exact meaning of these status codes depends on the type of device that sent it.
For example, status code 10 08 means "water low" if received from a process control controlled device
(command_format 50 through 5F). But, when received from a sound controlled device (command_format
10 through 1F), 10 08 means "amplifier failure."

The third status code range is qualified by both command_format and manufacturer.

32 MIDI Show Control 1.1

The exact meaning of these status codes depends both on the type and manufacturer of the device that
sent it. Manufacturers must publish information about all status codes in the third status code range
used by their controlled devices.

The following table summarizes the status code ranges:

hex range description

00 04 -- 0F FC command_format & manufacturer dependent
 status codes (1023 possible values)

10 00 -- 7F FC command_format dependent status codes (7,168
 possible values)

80 00 -- FF FC command_format independent status codes (8,192
 possible values)

00 00 undefined status code (unknown error condition)

Note: command_format independent status codes can be easily detected because they are negative
values when treated as signed values. Also, status code zero has been reserved to indicate an unknown
error condition or an error condition for which no other status code value applies.

Manufacturers are free to use status codes in the manufacturer dependent range as they see fit.
However, the highest degree of plug-and-play compatibility will be achieved if almost no status codes are
in the manufacturer dependent range. Therefore, a simple and quick method will be provided for
manufacturers to define relevant status code values in the command_format dependent range.

The tables below list all status codes that are independent of the command_format value. The letters in
the messages column indicate which messages can produce a response containing the status code
(S=STANDBY, G=GO_2PC, and C=CANCEL). The first table covers CANCELLED messages.

Status codes in CANCELLED messages

hex messages description

80 04 - - C completing
80 08 - - C paused
80 0C - - C terminated
80 10 - - C reversed
80 24 - - C not standing by
80 28 - - C manual override in progress

The second status codes table covers ABORT messages. N.B. the only legal status codes in an ABORT
message for a CANCEL message are "unknown/undefined error" and "checksum error." While the
"timeout" status code will never appear in actual message transmission, it is included to simplify
controller internal designs. All other cancel conditions are reported with a CANCELLED message.

MIDI Show Control 1.1 33

Status codes in ABORT messages

hex messages description

00 00 S G C unknown/undefined error
80 00 S G C checksum error
80 20 s g c *timeout
80 24 - G - not standing by
80 28 S G - manual override initiated
80 30 - G - manual override in progress
80 40 S G - deadman interlock not established
80 44 S G - required safety interlock not established
80 50 S - - unknown <Q_number>
80 54 S - - unknown <Q_list>
80 58 S - - unknown <Q_path>
80 5C S G - too many cues active
80 60 S - - cue out of sequence
80 64 S G - invalid d1 cue data value
80 68 S G - invalid d2 cue data value
80 6C S G - invalid d3 cue data value
80 70 S G - invalid d4 cue data value
80 90 S - - manual cueing of playback medium required
80 A0 S G - power failure in controlled device subsystem
80 B0 S G - reading new show cues from disk

* Used only internally by controllers. Should never appear in a transmitted abort message.

The presence of a status code does not require that it be used. Usage of a status code is required ONLY
when specified in the detailed command and data descriptions in Section 5 or the general two-phase
commit discussions in Sections 6 through 6.6. Status code values are listed here so that controlled
device designers may have a broad range of values from which to choose when implementing this
protocol. Also, this list provides a complete reference for the set of status code values that controller
implementers should translate into useful, human readable text. For example, a controlled device may
choose not to use the "cue out of sequence" status code at all. Or, a controlled device may choose to
provide a method by which specific sets of cues must be executed in sequence. Such a controlled device
would only return the "cue out of sequence" status code when its rules on sequential cueing are violated.

Special care must be taken in usage of the "manual override in progress" status code. Controlled devices
may be designed to ignore all two-phase commit MIDI show control messages whenever the local console
operator is manually initiating cue actions. When in effect, this condition is indicated by the "manual
override in progress" status code. Controlled devices designed in this way must ignore ALL two-phase
commit MIDI show control messages. Selectively ignoring some messages but not others can cause
system failures in the controller sending the messages. See Section 6.4.5 for more details of manual
override handling.

The following table lists status codes that are dependent on the command_format value but apply to all
controller manufacturers. Letters in the messages column indicate which messages can produce a
response containing the status code (S=STANDBY, and G=GO_2PC).

34 MIDI Show Control 1.1

hex messages description

For command_format values between 01 and 0F (lighting)

10 04 S G position motor failure
10 08 S G scroller motor failure
10 0C S G strobe not charged
10 10 S G laser safety interlock not established

For command_format values between 10 and 1F (sound)

10 04 S G amplifier failure
10 08 S G amplifier overload

For command_format values between 20 and 2F (machinery)

10 04 S G motor failure
10 08 S G limit switch inhibiting movement
10 0C S G unequal movement in multiple section system
10 10 S G servo failure

For command_format values between 30 and 3F (video)

10 04 S G sync lost
10 08 S G time code lost

For command_format values between 40 and 4F (projection)

10 04 S G film tension lost
10 08 S G lamp failure

For command_format values between 50 and 5F (process control)

10 04 S G hydraulic oil low
10 08 S G water low
10 0C S G carbon dioxide low
10 10 S G excess gas detected
10 14 S G gas pilot out
10 18 S G improper gas ignition conditions (windy)
10 1C S G smoke/fog fluid low
11 04 S G invalid switch number
11 08 S G latch setting system inoperative
12 04 S G burned out cue light

For command_format values between 60 and 6F (pyrotechnics)

10 04 S G charge not loaded
10 08 S G atmospheric conditions prohibit discharge

MIDI Show Control 1.1 35

6.8. Cue Data Values (d1, d2, d3, and d4)

Both the STANDBY and the GO_2PC messages include 4 7-bit cue data values. These data values must
be present in all STANDBY and GO_2PC messages, regardless of whether or not they are actually used
by a controlled device. When correct d1 ... d4 values are unknown for a given cue or a given controlled
device, zeros must be entered in the STANDBY or GO_2PC message in place of the d1 - d4 values.

The d1, d2, d3, and d4 data values allow controlled devices to rely on the controller to remember a small
amount of information about how a cue is to be executed. Examples of how these values might be used
appear later in this section. The d1 - d4 data values are not part of the cue numbering and identification
scheme. Therefore, if a controlled device is expected to execute two cues with differing d1 ... d4 values
simultaneously, the cues must be given different cue numbers.

The usage of the d1 - d4 values is defined by the designer of each controlled device. This definition must
either:

1) conform to one of the common usage forms described in Sections 6.8.1 through 6.8.2, or
2) be clearly described in the documentation about the controlled device.

Option 1 is preferred. This specification will be updated as necessary in order to make the common
usage forms appropriate for most controlled device manufacturers.

When a controlled device receives a d1, d2, d3, or d4 value that is incorrect, it must respond with an
ABORT message containing one of the "invalid dn cue data value" status codes. Thus, an incorrect d1
value must result in an ABORT message containing the "invalid d1 cue data value" status code.

Those controlled device that do not use one or more of the d1, d2, d3, or d4 values shall not inspect the
unused values for correctness. Suppose, for example, that a controlled device uses d2 and d3 (but not d1
and d4). That controlled device must check the correctness of all d2 and d3 values it receives. However,
all values received in d1 and d4 must be ignored. Controlled devices that use none of the d1 through d4
values must ignore all of them.

In those cases where the error cannot be isolated to a single d1 - d4 value, the ABORT message must
contain the status code that is appropriate for the lowest numbered data value involved. Suppose that a
compound datum is constructed from the d3 and d4 values. When that compound datum is incorrect, an
ABORT response message containing the "invalid d3 cue data value" status code must be sent.

6.8.1. Go-To-Level Lighting Console Usage of d1 and d2

Lighting consoles that operate on the "Go On, Go Off" concept use gl as a "Go Level" (where gl = d1 + (d2
* 128)). A STANDBY - GO_2PC sequence with gl = 255 is equivalent to Go On. A STANDBY - GO_2PC
sequence with gl = 0 is equivalent to Go Off. gl values between 0 and 255 are also legal. They indicate
that the specified cue should go to the level set by gl. For example, gl = 128 is equivalent to Go Cue To
50%. Any gl value not in the range 0 to 255 is currently illegal and must be responded to with an
ABORT message containing an "invalid d1 cue data value" status code. The gl values 256 and above are
reserved for possible future expansion of this capability.

36 MIDI Show Control 1.1

6.8.2. Multiplexed Switch & Cue Light Usage of d1, d2, & d3

Multiplexed switch test and set boxes use sn as a switch number (where sn = d1 + (d2 * 128)). In
addition, these boxes use d3 as a switch type value. The known switch type values are:

 0 reserved
 1 Close switch numbered sn
 2 Open switch numbered sn
 3 Test for switch number sn closed
 (aborts with "deadman interlock not established if open)
 4 Test for switch number sn open
 (aborts with "deadman interlock not established" if closed)
 10 Reset latch numbered sn
 11 Test latch numbered sn
 (aborts with "deadman interlock not established" if not latched)
 20 Operate cue light numbered sn

The electric eye used in the example in Section 6.9 could be tested using the numbered latch feature one
of these switch boxes. However, the example assumes special, one of a kind, hardware.

6.9. Examples Of Two-Phase Commit Usage

The next several sections describe possible usage mechanics for the two-phase commit methodology.
First, a basic, error free message exchange is described. Then, some example error conditions and how
they might be handled are discussed.

This section is intended to provide guidance to someone implementing the two-phase commit protocol
described previously in this document. It is not strictly a part of the protocol definition. The examples
in this section are simply that: examples. Anyone who can devise a better way to implement something
that conforms to the two-phase commit protocol described above is free to do so.

The examples in the following sections will be based on one coordinated cue. The cue involves a
motorized turntable, which must rotate 180 degrees to expose the set that is upstage at the beginning of
the cue. The complete turntable rotation through 180 degrees takes 30 seconds. Immediately down
stage of the set on the turntable is a flown drop that must be raised by a motorized fly system. The
turntable and fly system are both operated as MIDI controlled devices. They both have independent
operator consoles.

Before the cue can begin an actress must exit the turntable. Unfortunately, this exit occurs in such a
way that neither of the machinery operators can see it. Therefore, this system includes an electric eye
arrangement designed so that the actress always breaks a light beam during the course of her exit.
Before the fly or turntable can begin moving, the electric eye must have detected the actress' exit.

Of course, there are light and sound cues. There is one sound cue that begins when the actress breaks
the electric eye beam and a second that begins when the turntable has turned half of its rotation (90
degrees). There is a light cue that begins with the fly starts to rise, another when the turntable starts to
turn, and a final cue that begins when the turntable has completed its 180 degree rotation.

All these operations are coordinated by a controller MIDI show control computer. The functions are
broken down into several component elements in a way that permits key events to be detected by the
controller MIDI show control computer. For example, the turntable rotation is broken into to two 90
degree rotations, instead of a single 180 degree rotation.

MIDI Show Control 1.1 37

The following table contains a detailed cue list for the cues described above.

MIDI Two-Phase Commit Example Cue

Controller Cue Description

Electric Eye EE-6 Actress breaks electric eye beam
Sound S-109 First sound cue
Flys F-28 Raise line 12 to 10 feet (clear set)
Lights L-118 First light cue
Turntable TT-34 Rotate 90 degrees
Lights L-118.1 Second light cue
Flys F-28.1 Raise line 12 to upper limit
Turntable TT-34.1 Rotate 90 degrees
Sound S-110 Second sound cue
Lights L-119 Second light cue

The sequence in which these cues occur is:

1. Wait for the EE-6 to occur.
2. Go S-109.
3. Wait 3 seconds (to give the actress time to clear).
4. Go F-28 and L-118.
5. Wait for F-28 complete.
6. Go F-28.1, TT-34 and L-118.1.
7. Wait for TT-34 to complete.
8. Go TT-34.1 and S-110.
9. Wait for TT-34.1 to complete.
10. Go L-119.

The use of the L-119, TT-34.1 nomenclature is for the reader's convenience. The cue numbers
transmitted in the MIDI messages would not include them. For example, MIDI message for TT-34.1
would have <command_format>=24 and <Q_number>=34.1 and L-119 would have
<command_format>=01 and <Q_number>=119.

This sequence is conceptually based on an automated performance attraction at a major theme park.
Some liberties have been taken so as to construct something that will show most the MIDI two-phase
commit show control functions. If this sequence seems arbitrary or unrealistic, remember its principal
use is as a basis for explaining MIDI show control two-phase commit, rather than an actual production
situation.

6.9.1. Basic Message Exchanges

Now, let's consider how the basic cue sequence described above would be expressed in MIDI two-phase
commit show control messages. This discussion will assume that no error conditions occur. The
sequence of events is represented in the table below.

Time will flow from the top of the table to the bottom. The first column in the table is labeled seconds.
The numbers in that column represent the approximate time the event occurs in seconds and
thousandths of seconds.

38 MIDI Show Control 1.1

Error-Free MIDI Two-Phase Commit Example Cue Execution

Seconds Command Format Cue Seq. Status Notes (see below)

00.000 STANDBY 10 (S) 109 001 A
00.001 STANDBY 22 (F) 28 002
00.002 STANDBY 01 (L) 118 003
00.003 STANDBY 24 (TT) 34 004
00.004 STANDBY 01 (L) 118.1 005
00.005 STANDBY 22 (F) 28.1 006
00.010 STANDING_BY 001 B
00.011 STANDING_BY 002
00.012 STANDING_BY 006
00.013 STANDING_BY 003
00.014 STANDING_BY 004
00.015 STANDING_BY 005
05.000 STANDBY 5F (EE) 6 007
05.010 ABORT 007 80 40 C
05.500 STANDBY 5F (EE) 6 008
05.510 ABORT 008 80 40 C
06.000 STANDBY 5F (EE) 6 009
06.010 STANDING_BY 009 D
06.020 GO_2PC 10 (S) 109 010
07.500 COMPLETE 010
09.000 GO_2PC 22 (F) 28 011 E
09.001 GO_2PC 01 (L) 118 012
09.500 GO_2PC 22 (F) 28.1 013 F
10.000 COMPLETE 012
11.000 COMPLETE 011
11.001 GO_2PC 24 (TT) 34 014 G
11.002 GO_2PC 01 (L) 118.1 015
11.003 STANDBY 24 (TT) 34.1 016
11.004 STANDBY 10 (S) 110 017
11.005 STANDBY 01 (L) 119 018
11.015 STANDING_BY 016
11.016 STANDING_BY 017
11.017 STANDING_BY 018
16.000 COMPLETE 015
21.000 COMPLETE 013 H
24.000 GO_2PC 24 (TT) 34.1 019 I
26.000 COMPLETE 014 J
26.001 GO_2PC 10 (S) 110 020
34.000 COMPLETE 020
41.000 COMPLETE 019 K
41.001 GO_2PC 01 (L) 119 021
44.000 COMPLETE 021

Notes:
A. Send STANDBY messages for all cues that will go before the turntable completes 90 degrees of

rotation. N.B. this must be done early enough to allow the full two second timeout interval to
elapse before any actual cue execution is necessary.

B. STANDING_BY response messages received. Only sequence numbers are used to identify the
cues to which the STANDING_BY messages apply. Also, the STANDING_BY messages may not
be received in the same order that the STANDBY messages were sent. In this case, the flys

MIDI Show Control 1.1 39

controlled device gets its two STANDING_BY messages in back-to-back, even though other
messages separated the STANDBY messages when they were sent.

C. The electric eye STANDBY aborts because the actress has not broken the electric eye beam.
D. The electric eye STANDING_BY message indicates that the actress has broken the electric eye

beam. (Strict MIDI two-phase commit completeness requires that a CANCEL be sent for EE-6.
But this is unnecessary since the controlled device does not require it.)

E. Note the seconds column. There is an approximately three second delay between receipt of the
STANDING_BY message at 06.010 and initiation of the flys and lights cues at 09.000.

F. The flys cue 28.1 GO_2PC message is sent before the COMPLETE message is received for cue
28. The flys controller interprets this as an indication that line 12 should be kept moving while
the COMPLETE message for cue 28 is sent.

G. Once flys cue 28 reports complete, the turntable cue 34 and light cue 118.1 can be started. At
this point, the standby message exchanges for the remaining cues also are performed. The same
timeout considerations discussed in note A above apply here.

H. Line 12 is completely flown at this point.
I. The turntable cue 34.1 GO_2PC message is sent before the COMPLETE message is received for

cue 34. Like the flys controlled device, the turntable controlled device interprets this as an
indication that motion should be continued while the COMPLETE message for cue 34 is sent.

J. Once turntable cue 34 reports complete, sound cue 110 can be started.
K. Once turntable cue 34.1 reports complete, light cue 119 can be started.

6.9.2. Error Condition Detected Early

Now, some error conditions will be introduced into the basic cue sequence described in Section 6.9.1.
First, consider an error that prevents execution of the entire cue sequence. Suppose the fly system
control computer has detected a problem in one of the winch motors on line 12. It will return an ABORT
message instead of a STANDING_BY message. The controller will respond to this by sending CANCEL
messages for all cues that it previously sent STANDBY messages.
The message sequence would look something like:

Seconds Command_ Format Cue Seq. Status Notes (see below)

00.000 STANDBY 10 (S) 109 001
00.001 STANDBY 22 (F) 28 002
00.002 STANDBY 01 (L) 118 003
00.003 STANDBY 24 (TT) 34 004
00.004 STANDBY 01 (L) 118.1 005
00.005 STANDBY 22 (F) 28.1 006
00.010 STANDING_BY 001
00.011 ABORT 002 10 04 A
00.012 CANCEL 10 (S) 109 007 B
00.013 ABORT 006 10 04
00.014 CANCEL 01 (L) 118 008
00.015 STANDING_BY 003
00.016 CANCEL 24 (TT) 34 009
00.017 CANCEL 01 (L) 118.1 010
00.018 CANCEL 22 (F) 28.1 011
00.030 CANCELLED 007 80 0C C
00.031 CANCELLED 009 80 0C
00.032 CANCELLED 010 80 0C
00.033 CANCELLED 008 80 0C
00.034 CANCELLED 011 80 24 D

40 MIDI Show Control 1.1

Notes:
A. The first flys cue returns the ABORT message with a "motor failure" status. This status would

be converted to text and displayed to the controller operator.
B. CANCEL messages are sent to all controlled devices for all cues that have not yet completed

execution. This conforms to the two-phase commit error recovery principles described in Section
6.4. Because the individual controlled devices are still processing the STANDBY messages,
STANDING_BY and CANCEL messages are intermixed on the wire.

C. The CANCELLED messages begin arriving. Like STANDING_BY messages, the CANCELLED
messages need not be received in the same order that the CANCEL messages were sent. The
CANCELLED status is "terminated" because none of the canceled cues ever began execution.

D. The controller left nothing to chance. It sent a CANCEL message for F-28.1 even though an
ABORT message for that cue was received at 00.013 seconds. Since the flys controlled device
had already "forgotten" that F-28.1 was standing by, its CANCELLED message contains a "not
standing by" status code.

The good news in this hypothetical situation is that the MIDI Show Control Two-Phase Commit protocol
has detected and reported the inoperative fly system motor. Initiation of the turntable rotation has been
automatically stopped. The set on the turntable will not rotate into and shred the drop. Last, but by no
means least, the stage manager's MIDI show controller has alerted him/her to the situation. The bad
news is that the fly system operator is going to have to work fast to deal with the bad winch motor on
line 12.

6.9.3. Errors Detected During Execution Of A Cue

Error conditions that are detected during execution of one or more cues are dealt with in basically the
same manner as is shown in the previous section. All pending or executing activities are ended using
CANCEL messages. The major difference is that, because some actions are already in progress, the
number of possible shutdown options grows dramatically. Picking a definitive right thing to do becomes
much more difficult.

Ultimately, the designers of two-phase commit controlled devices must consider carefully the choices
between completing, pausing, terminating, and reversing cues whose execution has already been
initiated. For example, suppose that the motors driving the turntable in the basic cue sequence example
fail after the turntable has rotated 45 degrees. The ABORT message would be sent at about 18.000
seconds in the table in Section 6.9.1.

CANCEL messages would be sent for the two cues that are standing by, S-110 and L-119. However, the
interesting problem is handling the CANCEL message for F-28, which is not yet complete at that time.
Since line 12 is going out, the safest thing to do is probably to complete F-28, returning a "completing"
status in the CANCELLED message and ultimately a COMPLETE message. However, if line 12 were
coming in, F-28 should not be completed. Pausing, terminating, or reversing the cue is the proper choice
in that situation.

GENERAL MIDI SYSTEM LEVEL 1
DEVELOPER GUIDELINES

For Manufacturers and Composers
Second Revision, July 1998

Published by:
MIDI Manufacturers Association

Los Angeles CA

Prepared by Paul D. Lehrman, associate director for development
Center for Recording Arts, Technology & Industry, University of Massachusetts Lowell.

Additional text and editing by Howard Massey, MMA technical editor and
senior consultant, On The Right Wavelength

Copyright ©1996, 1998 MIDI Manufacturers Association

All rights reserved. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including information storage and retrieval systems, without
permission in writing from the MIDI Manufacturers Association.

Second Printing 1998
Reformated 2014

MMA
POB 3173
La Habra CA 90632

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

i

CONTENTS
Introduction.. 1
How to Use This Document ... 1
Acknowledgments .. 2
Changes to Specification in Second Revision ... 2

Additional Protocol Implementation Recommendations ... 3
Clarifications .. 3
Response to “GM System On” Message .. 4
Response to “Reset All Controllers” Message ... 5
RPN/NRPN Null Function Value .. 6
Use of Data Entry Controllers... 7
GM Polyphony Requirements.. 7
GM Voice Allocation - Overflow and Channel Priority .. 8
Volume, Expression & Master Volume Response .. 9
Response to Pan ... 10
Use of Bank Select Messages .. 11
Response to Program Changes .. 12
Aftertouch... 12
Built-In Effects & Response to Effects Controllers .. 13
Additional Notes About Controllers .. 14
Additional Instrument Sounds (Extensions to GM)... 14
Additional Drum Sounds & Kits (Extensions to GM) .. 15
Response to Note-off on Channel 10 (Percussion) .. 15
Mutually-Exclusive Percussion ... 16
File Formats and Editing Capability .. 17
MIDI Player Control: Starting in the middle ... 17
File Data: Prep bars ...18
File Data: Pickup bars ... 18
File Data: SMF Marker Event... 19
File Data: Other Meta-Events ... 19
File Data : Channel Assignments ... 19
File Data: Multiple Devices (non-GM hardware) ... 20

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

i i

Appendix A: ... 22
Voice editing ... 22

Appendix B: ... 23
Fat Labs Instrument Testing Specifications .. 23
General ... 23
Individual Timbres .. 23
Percussion .. 24

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

P a g e 1

Introduction

This document was commissioned by the MIDI Manufacturers Association in 1995 to help
developers of General MIDI System Level 1 (GM Level 1) products determine how to make
their products compatible with as many other GM products as possible. Based on a survey of
existing products, this document provides insights into areas of compatibility which are not
clearly defined by the text of the formal GM Level 1 Specification (MMA0007/RP003), and adds
additional recommendations to that specification based on market realities. This document
should be used by manufacturers of GM compatible musical instruments (typically called
“synthesizers”) as well as by composers (authors of MIDI files) and developers of applications
software to achieve more predictable playback of MIDI files.

Rather than attempt to redefine General MIDI “after-the-fact” (at this writing there are
already over 1 million sound generating devices on the market which are designed for GM
playback), this document identifies common practices and makes specific recommendations, yet
still allows for freedom of creativity by individual manufacturers and developers.

The MMA GM Survey on which this document is based was commissioned to determine the
current state-of-the-art in GM and to provide the information from which the MMA Technical
Board could prepare recommendations. The work of collecting, compiling, and analyzing the
survey data and making initial recommendations was done by Professor Paul Lehrman, a
noted MIDI composer and author of numerous books and magazine articles on MIDI. Final
editing and additional input was provided by Howard Massey, an industry MIDI consultant
and author/educator. All recommendations were reviewed and evaluated by the MMA
Technical Standards Board, to produce the final document you see here.

The survey results were published as part of the first printing of this document, but removed
from the second (and on-line) publication(s).

How to Use This Document

This document begins with a summary of clarifications to the General MIDI System Level 1
specification. The summary clarifications are intended to be used as a companion and
supplement to the actual specification. In many cases, the clarifications are additional
information which the MMA Technical Board has determined should have been included in the
published specification, but were omitted due to some oversight. In other cases this information
is a clarification of ambiguous wording in the specification, and it is hoped that the new detail
provided in this supplement will avoid further deterioration of GM compatibility.

The remainder of the document is an analysis of each issue of potential incompatibility (as
determined by research into existing products). The issues are divided into two groups: “GM
Synthesizer” issues and “GM Music File” issues. Within the GM Synthesizer group are any
issues about the design of a GM compatible synthesizer that may be unclear, for both the
manufacturer and the potential application or data developer. In the interest of making this a
“quick reference guide,” the analysis of each issue is preceded by a summary of the final
recommendations, with separate recommendations for manufacturers of these products as well
as for application or data developers where appropriate.

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

P a g e 2

Appendix A lists common controls for voice editing, while Appendix B describes the procedure
used by Fat Labs, a well known producer of music for computer games, to evaluate GM
hardware for compatibility with music composed on Roland’s Sound Canvas.

While the Sound Canvas is not an officially recognized reference for GM by the MMA, it is the
predominant reference platform used by composers working in the field of interactive
multimedia and PC games, as reported by the Interactive Audio Special Interest Group
(IASIG). The appearance of the Fat Labs test procedure is not an endorsement of the test (nor
the Sound Canvas) and is provided herein merely as additional information which developers
may wish to use as a reference for determining an acceptable process for evaluating GM
compatibility.

Acknowledgments

We would like to thank all of the MMA members who helped put the survey together; all who
helped get others to respond; and all of those who responded. Special thanks to Tom Rettig,
Yoshi Sawada, Mike D’Amore and Mike Kent. Extra special thanks to Barbara Blezard,
administrative coordinator of the Recording Industry Environmental Task Force, based at the
University of Massachusetts Lowell, who designed the database and entered the survey
response data.

And thanks go to MMA Technical Board members Bob Lee (Gulbransen) and Rick Cohen
(Kurzweil) for their efforts to edit and correct the recommendations and explanations herein.

Changes to Specification in Second Revision

The second revision documents a change in the MMA recommendation for correct response to
the Reset All Controllers (CC #121) message. Expression was added to the list of controls which
should be reset. The descriptions and/or placement in the document of some items to be reset or
not reset were also rewritten for more clarity.

An additional paragraph was added to clarify the proper use of the Bank Select message in
those files which are intended to support both General MIDI and extensions such as Roland’s
GS or Yamaha’s XG devices.

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: General MIDI System ⎯ Level 1 Specification

P a g e 3

Additional Protocol Implementation Recommendations
• Data Entry Controllers (CC#6, CC#38)

• RNP/NRPN Null Function (C/A JMSC-0011)

• Mutually Exclusive use of Hi-hat and Triangle in Percussion Channel

• Response to Note-Off for Long Whistle and Long Guiro in Percussion Channel

• Response to All Sounds Off Message (cc120)

Clarifications
• Defined response to Turn GM System On Message

• Defined response to Reset All Controllers Message (revised)

• Defined Channel Priority scheme for Voice Allocation

• Defined Volume and Expression Controller response curves

• Defined Response to Pan Controller Messages

• Defined Response for Non-GM Controllers (Bank Select, Effects, etc.)

• Defined Response for Aftertouch (MIDI 1.0 Detailed Specification Recommendation)

(See text for specific details about each of these recommendations.)

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: GM Synthesizer Issues

P a g e 4

Response to “GM System On” Message
• The time required for complete response to the Turn GM System On message should be

as short as possible (the current hardware average is 100ms).
• The response to this message should include the following actions on all Channels:

1. All actions defined for the Reset All Controllers message (see next section) plus:
• Set Volume (#7) to 100
• Set Expression (#11) to 127
• Set Pan (#10) to 64

2. Devices which also respond to Effects Controllers (#91-#95) should reset to default
values (power-up state). Effects are not required for GM but effects controllers may
still be used by composers (see that section)

3. Any other actions needed to restore the device to GM-compatible settings, such as
reset Bank Select and Program Change to “0”.

• GM devices which support other modes of operation should “wake up” (power on) in GM
mode, and not go out of GM Mode when receiving non-GM compatible messages (such
as Bank Select).

File Player Recommendations: Devices designed only to play GM music files, or when in a
mode which is designed only to play GM music files, should transmit the GM Mode On
message upon power-up. Developers of software applications designed to play GM music
files exclusively should ensure that the Turn GM System On message is transmitted when
the application is launched, such as from a dialog prompting the user to connect and turn on
the receiving device.
Composer Recommendations: Composers should not include the GM System On message in
the body of GM music files. However, if necessary, the message can be included in “prep”
bars (see page 21), as long as a delay of 100 - 200 ms before the onset of music is also
provided.

Details:

Description of Issue:
After receiving a “GM System On” message, some devices need a period of time to reset
themselves before they can start producing sound. How prevalent is this practice, what
length pauses are required, and what can composers and authors do to avoid problems?
In addition, some devices will go in or out of GM mode under certain conditions. What
are these conditions, and are any of them acceptable?
Findings:
5 of the hardware respondents said that their devices don’t need any amount of time
after receiving a Turn GM System On message before they can play sound. 2 were
vague about the length of the pause needed, and of the others the range was from 10
ms all the way to “1-2 seconds”, with 100 ms being the median value.

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: GM Synthesizer Issues

P a g e 5

The most common time for a module to go into GM mode is when the unit powers up,
which is as it should be. 11 devices go into GM mode the first time they’re turned on,
and 9 of those go into GM mode every time they’re turned on. In addition, 7 of these
can be put into GM mode from the front panel. 3 devices never go out of GM mode. 7
devices go out of GM mode when they receive specific Bank Select commands, but
surprisingly, only 5 do so when they receive a Turn GM System Off message. One
device goes out of GM mode when it receives a “GS Reset” (SysEx) command. 6 can go
out of GM mode from the front panel.

Response to “Reset All Controllers” Message
• The MMA recommends that reception of the Reset All Controllers (CC #121) message

cause the following response in GM devices:

• Set Modulation (#1) to 0.
• Set Expression (#11) to 127.
• Set Pedals (#64-67) to 0.
• Set Registered and Non-registered parameter LSB and MSB to null value (127).
• Set Pitch Bender to center (64/0).
• Reset Channel pressure to 0.
• Reset polyphonic pressure to 0 (for all notes on that Channel).
• All other controllers should be set to 0, otherwise the behavior should be
documented.

The Association of Music Electronics Industry (AMEI, formerly the Japan MIDI
Standard Committee) has proposed that the following parameters specifically be left
unchanged upon receipt of a Reset All Controllers message. The MMA has not yet
officially adopted this recommendation but it is unlikely that following this
recommendation would cause serious incompatibilities. The MMA is expected to
respond on this issue for both GM and non-GM devices shortly.

Do not Reset:
• Program change
• Bank Select (#0 and #32)
• Volume (#7)
• Pan (#10)
• Effects Controllers #91-95 (not a GM control)
• Sound controllers #70-79 (not a GM Control)
• Other Channel mode messages (#120, #122-#127)

• Manufacturers should create a section in their documentation for response to the Reset
All Controllers message, especially for controllers used by the device on a global basis, if
any.

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: GM Synthesizer Issues

P a g e 6

• If a device will respond differently to the Reset All Controllers message in General MIDI
mode or in its native mode, this behavior should also be documented.

Details:

Description of Issue:

With the advent of many new controllers in MIDI, including Bank Select, the state of a
controller after reset has become significant to compatibility issues as well as in
performance situations. Exactly how should controllers in GM devices be reset
following the reception of a Reset All Controllers (CC #121) or Turn GM System On
SysEx message? This specific issue was not addressed in the MMA GM Survey, so this
information has been obtained through an MMA proposal.

RPN/NRPN Null Function Value
• The RPN/NRPN Null Function (MIDI 1.0 Approved Protocol JMSC-0011) is not listed as

a requirement in the GM Level 1 specification, but according to the MIDI protocol
should be recognized by any MIDI device which also recognizes RPNs. Therefore this
function is recommended for all GM Devices (and should be implemented in response to
the Reset All Controllers message … see page 6).

Composer Recommendations: See the MIDI Specification for instructions on when to use
this message. Due to the apparent lack of implementation in current products, composers
should not use this message if ignoring it will cause unacceptable playback.

Details:
Description of Issue:

RPNs (and NRPNs) are designed so that when a parameter is selected and then
followed by a corresponding Data Entry (CC # 6/38) or Data Increment/Decrement (CC
96/97) value, all subsequent data values will continue to address that parameter
until another RPN or NRPN is selected. The “Null function” value (7F for both the
MSB and LSB) is used to lock in the value of the RPN or NRPN so that subsequent
Data Entry and Data Increment/Decrement commands are ignored. Some
manufacturers, however, implement the Null function, or variations thereof, in
response to other events or commands.

Findings:

Our survey determined that there is a confusion among manufactures as to what
exactly it means to “null” a Registered or Non-Registered Parameter. Apparently some
thought the question applied to resetting values to their default settings (or zero).
Respondents also indicated that the following commands/events affect the current RPN
values, but did not always indicate which way. (Note: some devices respond to more
than one of these, and some don’t respond to any of them):

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: GM Synthesizer Issues

P a g e 7

Commands/Events that Affect RPN/NRPN Values (survey) Respondents
Power Off/On 3
GM Mode On or other mode change (CC#s 124-127) 3
Program Change 2
Reset All Controllers (CC#121) 2
RPN Null Function 2
Bank Select 1

The MMA does not yet have a recommendation on the appropriateness of response to
these messages, other than Reset All Controllers (recommended).

Use of Data Entry Controllers
• Data Entry MSB (CC# 6) and LSB (CC #38) are required to be implemented by all GM

devices for the adjustment of RPNs defined in the specification
Composer Recommendations: Composers adjusting RPNs should utilize the Data Entry
MSB (CC# 6) and, if necessary, the Data Entry LSB (CC #38), not the Data
Increment/Decrement (CC #96/97) for this purpose.

Details:
Description of issue:

According to the GM Level 1 Specification, a device must respond to RPNs 00-02.
However, it is not specified how to adjust these parameters —by using Data Entry (CC
#6 and CC #38), Increment/Decrement (CC #96/97), or by other means.

Findings:

9 of the 13 respondents indicated that their hardware devices support the Data Entry
MSB (CC #6) for the adjustment of RPNs 00-02 (Pitch Bend Range, Fine Tuning, and
Coarse Tuning, respectively). Only one respondent indicated that the Data Entry LSB
(CC #38) was supported, and only one indicated support for the Reset RPN (7F/7F).
Because the GM Level 1 Specification mandates response to RPNs for pitch bend
sensitivity and tuning, support for the Data Entry MSB (CC# 6) and LSB (CC #38) is
an oversight in the specification.

GM Polyphony Requirements
• GM devices should have as many voices (24 or more) as possible available at all times.
• GM Devices should diligently avoid “stacking” of voices (oscillators), so that composers

can be sure that 24 note polyphony is available for all instrument sounds.
• Composers may want to limit their compositions to 16 simultaneous notes for

compatibility with currently popular products which “stack” oscillators in contrast to
the above recommendations.

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: GM Synthesizer Issues

P a g e 8

Details:

Description of Issue:

The GM Level 1 Recommended Practice specifies a minimum of either 24 “voices” for
melodic and percussion sounds, or 16 for melody and 8 for percussion. Most people
assume that this means that under all circumstances, a GM synthesizer that receives
24 MIDI note-on commands will produce 24 distinct sounds. However, a number of
manufacturers, in an effort to improve sound quality without radically increasing the
size of the sound engine, use two or more oscillators to create some programs. For
example, Honky-tonk piano (program #4) is often created by layering two standard
piano sounds and detuning them—a practice which results in total polyphony being
reduced in half (from 24 to 12, for example). To compensate, manufacturers can raise
the number of voices available, so that the chances of polyphonic overload are reduced.
But even in those cases, unless the manufacturer provides at least 48 voices and no
program uses more than two voices, polyphony of 24 cannot be guaranteed.

As far as composers are concerned, the question is, under current practice, how many
voices are available in a General MIDI module to cover all possible scores? A secondary
issue is whether it is desirable to separate percussion and non-percussion voices.

14 out of the 16 products described share polyphony between percussion and melody
voices. Of the 2 others, one is a software-based synth engine (wavetables are loaded
into a computer's RAM and played back, under MIDI control, directly through the CPU
and a DAC), and one’s answers were ambiguous. Of the 14 products that share
polyphony, 10 provide 32 voices. Of the remainder, one provides 64 voices, but since it
uses at least 2 voices on every program, the practical polyphony is reduced to 32.

The use of multiple voices to create GM programs is widespread. Only one respondent
said that no programs used multiple voices — the others ranged from 15 to 55 (not
including the “64-voice” system mentioned above), with the median value being around
30. The majority of systems have no programs that use 3 or more voices, and of those
that do, the median value is 5.

GM Voice Allocation - Overflow and Channel Priority
• Allocation priority should always be given to the most recent voice(s) played. Second

priority should be given to the loudest voice(s) currently being played. In addition,
manufacturers should implement other musically-oriented solutions, such as stealing
individual oscillators from multiple-oscillator programs, and reassigning oscillators
which can no longer contribute substantially to the perception of a note.

• Notes on certain MIDI Channels should have priority over others. That is, Channel 10
receives highest priority, followed by Channel 1, then Channel 2, etc., with Channel 16
receiving lowest priority.

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: GM Synthesizer Issues

P a g e 9

Composer Recommendations: It is advised that MIDI file authors insure that voice overflow
situations (where more than 24 notes need to be played simultaneously) are avoided. A
MIDI file checker application can help identify these situations.

Details:
Description of issue:

Roland and Yamaha recommend specific Channel assignments for specific
instrumentation, supposedly to provide better compatibility during a voice-overflow
situation. If allocation schemes can contribute to compatibility problems, is there a
recommendation for how notes (and Channels) should be prioritized?

Findings:

The respondents were split evenly between last-note and highest-volume priority.
Three used various combinations of priorities. The issue of Channel priority was not
addressed in the survey; however, many manufacturers including Roland and Yamaha
follow the scheme described above, and this is also the scheme recommended by the
IASIG for the upcoming Downloadable Sounds specification for synthesizers.

Volume, Expression & Master Volume Response
• Volume (CC#7) and Expression (CC #11) should be implemented as follows:

For situations in which only CC# 7 is used (CC#11 is assumed “127”):
L(dB) = 40 log (V/127) where V= CC#7 value
For example: CC#7 amplitude

 127 0dB
 96 - 4.8dB
 64 -11.9dB
 32 -23.9dB
 16 -36.0dB
 0 -

This follows the standard "A" and "K" potentiometer tapers.

For situations in which both controllers are used:

L(dB) = 40 log (V/1272) where V = (volume x expression)
The following table denotes the interaction of volume and expression in
determining amplitude:

 CC#7 CC#11 total amplitude CC#7 CC#11 total amplitude
 127 127 0dB 127 96 -4.8 dB
 96 127 -4.8dB 127 64 -11.9dB
 64 127 -11.9dB 127 32 -23.9dB
 32 127 -23.9dB 127 0 -
 16 127 -36.0dB 64 64 -23.9dB
 0 127 - 32 96 -28.8dB

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: GM Synthesizer Issues

P a g e 1 0

• The Master Volume SysEx message is not specified in GM Level 1 (and the MMA is in

the process of clarifying its application), so its implementation is optional at best.
Composer/Application Recommendations: Volume should be used to set the overall volume
of the Channel prior to music data playback as well as for mixdown fader-style movements,
while Expression should be used during music data playback to attenuate the programmed
MIDI volume, thus creating diminuendos and crescendos. This enables a listener, after the
fact, to adjust the relative mix of instruments (using MIDI volume) without destroying the
dynamic expression of that instrument.

Details:
Description of Issue:

Use of volume (CC#7) and expression (CC#11) are required by GM Level 1, but there is
a degree of confusion regarding their exact effect on sound levels, either singly or in
combination. In addition, the Master Volume Universal System Exclusive command is
not mentioned in GM Level 1, but is finding favor among some manufacturers.

Findings:

Not surprisingly, all hardware respondents said their devices responded to Continuous
Controller #7. There was general agreement about how these two controllers interacted
as well: In 9 cases, their values were combined (multiplied) to get the actual level. The
recommended volume response curves for CC#7 (volume) and CC#11 (expression) used
herein were provided to the General MIDI Working Group of the IASIG/MMA by
Yamaha Corporation. Roland uses the same response curve, and other Japanese
manufacturers who are members of the AMEI have agreed to do the same.

Of the 20 software respondents, all used CC#7 and 11 use CC#11. The largest number
of software respondents (6) said they used CC#7 to set initial level and CC#11 for
dynamic expression during music playback. In 2 other cases, CC#11 was set to a preset
level and kept there.

Master Volume is supported by 6 hardware respondents, and 2 others have plans to
include it in the future. Only 3 of the software respondents use it.

Response to Pan
• Immediate response to a Pan command (applying it to currently-sounding notes) should

be supported.
Composer Recommendations: Until the above recommendation is universally implemented,
composers of GM music files should be aware that sustained notes may not be panned on all
devices.

Details:

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: GM Synthesizer Issues

P a g e 1 1

Description of issue:

Correct response to the Pan (CC #10) command is not defined in the GM specification
document. Some devices respond by immediately shifting the apparent position of all
currently sounding notes (on the Channel), while others will not move a current sound
(choosing to Pan only those notes received after the Pan command).

Findings:

Software makers seem to be more optimistic that sustained notes will be affected by
Pan commands than the current state of hardware would indicate. 12 of the 20
software respondents expect Pan commands to be acted upon immediately, while only
5 of the 14 hardware respondents said that sustained notes will be affected by a Pan
command (although two more said they were planning to implement sustained-note
Pan on their next models). Though one could imagine cases where not-panning would
be nice, one should assume (by default) a timely response to a Pan message.

Use of Bank Select Messages
• Bank Select (CC #0/32) should be completely ignored in GM Mode.

Composer Recommendations: Composers of GM music files should not assume that any
voices other than the GM Sound Set are available and should therefore not use Bank Select
messages. Variations on GM voices can be accomplished by altering the playing style or by
using controllers to introduce variations into the music

Details:
Description of issue:

GM Level 1 defines only a single Sound Set of 128 instruments and does not mandate
the use of the Bank Select controller (CC #0/32). Yet many GM instruments provide
additional sounds, accessed by Bank Select commands (sometimes followed by Program
Changes), and some GM devices automatically go out of GM mode when Bank Select
messages are received.

Findings:

12 of the 14 hardware respondents recognize the Bank Select MSB (CC #0). Of those, 4
also recognize the Bank Select LSB (CC #32). In 3 cases, they are followed by a
Program Change command in order to call up a “variation” on the sound — this is the
GS approach. In 7 cases they choose non-GM banks, and in at least one case they
specifically take the device out of GM mode. These commands are much less
frequently used on percussion Channels: only 2 of the devices recognize Bank Select on
Channel 10, and then to select a non-drum bank for the Channel.

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: GM Synthesizer Issues

P a g e 1 2

Things are different on the software side: 12 of the software recipients do not use Bank
Select at all. Of the others, 3 use CC#0, and 3 more also use CC#32.

Note: CC#0 and CC#32 were defined in 1990 as the Bank Select message and should
not be used for any other purpose, separately or together. Transmission of only CC#0
or CC#32 is not a complete Bank Select message and should be discouraged.

Response to Program Changes
• Program Changes received during a sustained note should not cut off the note.

Composers/Application Recommendations: Despite the fact that most GM hardware will not
cut off notes upon receipt of a Program Change message, the safest course of action is still to
send these messages during silent portions of the music.

Details:
Some developers expressed concern that devices receiving a Program Change in the
middle of a sustained note could cause the note to be cut off? This turned out to not be
a problem— only 2 of the 14 hardware respondents report that a Program Change sent
during a sustained note will cut off the note.

Aftertouch
• Channel Pressure (Aftertouch) response is a requirement of General MIDI, and should

be used to add vibrato (or tremolo, if more appropriate) to voices. Manufacturers should
assume that developers will use the full range of Aftertouch values, so high values of
Aftertouch should not create unnatural amounts of vibrato.

• Other uses of Aftertouch such as volume or timbral change should be avoided.
Composer Recommendations: Composers of GM music files should not hesitate to use
Aftertouch to add vibrato to voices; however, since there are no standards as to how much
vibrato is to be applied with a given Aftertouch value, it is probably wise to err on the
conservative side, lest listeners experience seasickness after a few bars. Some
manufacturers also have chosen to implement Aftertouch as tremolo where appropriate to
the instrument, so this should be considered by composers.

Details:
Description of Issue:

Response to Channel Pressure (Aftertouch) is a GM requirement, but no specifics are
given as to how a device should respond.

Findings:

All but one manufacturer recognizes Aftertouch, and the majority of them use it to
control either pitch-based vibrato depth or a more complex set of vibrato parameters.

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: GM Synthesizer Issues

P a g e 1 3

Five manufacturers said their Aftertouch response was programmable, and it is
probably safe to assume that the default versions of their GM programs map
Aftertouch to some form of vibrato.

Built-In Effects & Response to Effects Controllers
• Although not mandated by GM, manufacturers should feel free to provide onboard

effects. The minimum suggested number of effects is two — Reverb and Chorus —
though more may be provided, at the manufacturer’s discretion.

• Controllers 91 and 93 should be used to set Reverb and Chorus send levels in order to
maintain compatibility with current defacto standards (GS and XG, among others).

• Default effects send levels (those used on power-up or upon receipt of a GM Mode On
message) should be moderate (value = 64 or less).

• Unassigned Controllers should not be used (to switch effects or for any other purpose).

Composer Recommendations: If including effects controllers can enhance the playback of a
file, while at the same time the lack of effects will not harm it, then composers should feel
free to use them. Because it cannot be assumed that effects send or return levels will default
to any predictable value when a GM device is turned on or switched to GM mode, composers
should place initial values — for safety purposes in the lower end of the range — for
Controllers 91 and 93 on all Channels in “prep bars” at the beginning of music files.

Details:
Description of Issue:

Reverb, chorus, delay, flanging, EQ, etc. are to be found in just about every GM device
on the market, since they can improve the sound significantly at relatively modest cost.
GM Level 1, however, includes not a single mention of effects, and so manufacturers
are on their own as to what effects to include, and how to make them accessible to the
user.

Findings:

A majority of music industry respondees reported their products have effects. 8 of the
respondents reported their devices could produce two effects simultaneously, and 3
said theirs could handle three or more. The GS (and base-level XG) usage of two
effects — reverb and chorus — are most common in the GM community.

Virtually all of these devices set their reverb and chorus send levels via CC#91 and
CC#93, respectively. Software respondents are a bit more conservative; only 7 use
these controllers in their files. Though other effects are available in some of the
hardware, none of them were addressed by the software respondents.

Only one hardware respondent reported that the effects on their devices are not
adjustable. 3 said they were adjustable on a global or per-program basis, while 9 said

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: GM Synthesizer Issues

P a g e 1 4

they were adjustable on a per-Channel basis. Several hardware respondents use
unassigned controllers or NRPN’s to select effects programs or variations, while others
use SysEx messages.

The default settings of the effects varied widely among the hardware respondents, and
effects are not required for GM, so no obvious recommendation (other than to follow
the Sound Canvas and XG guidelines) is evident from this survey.

Additional Notes About Controllers
• Factory presets should generally be set up with all controllers (except Volume [CC #7]

and Expression [CC #11]) set to 0 or 64 (center), as the case may be.
• The All Sound Off (CC#120) Channel Mode message is recommended for all MIDI

devices, though not listed as a requirement in the GM System Level 1 specification.
• Non-standardized adjustments should be made with NRPNs or SysEx, as defined by the

MIDI Specification.
Composer Recommendations: Composers of GM music files should assume that the only
controllers available to them are those listed in GM Level 1 — with the addition of Data
Entry (CC#6 and, if necessary, CC #38) for adjusting RPNs. Use of non-standard controllers
for special purposes should be restricted to systems (applications) where the MIDI data is
not intended for playback on other systems.

Details:
Appendix A presents a detailed listing of the controllers used in surveyed GM
hardware devices. What is clear from this data is that virtually all such devices
support all the controllers and Channel Mode messages required by GM Level 1. Most
also implement those described in Roland’s GS and Yamaha’s base-level XG command
sets (including Bank Select [CC #0/32], Data Entry [CC #6/38], Sostenuto [CC #66],
Soft Pedal [CC #67], Reverb Send Level [CC #91], and Chorus Send Level [CC #93]).

Among software respondents, 2 replied that they include RPNs in their files, and one
replied that they use “unassigned” (non-defined) controllers for internal functions.
Appendix B presents a summary of common NRPN messages for “voice editing”.

Additional Instrument Sounds (Extensions to GM)
• Additions (or variations) to the GM Sound Set should not be accessible while the device

is in GM mode.
• In order to maintain some degree of standardization among GM devices, organization of

and access to variation sounds may be most appropriate if done in the manner of GS
and/or XG specifications.

Composer Recommendations: Composers of GM music files should assume there are no
other sounds available besides the GM Sound Set, unless they are writing for specific
platforms.

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: GM Synthesizer Issues

P a g e 1 5

Details:
Exactly half of the devices surveyed contain from anywhere from 32 to 500+ additional
sounds besides the GM sound set. There was no apparent consensus on how these
sounds are laid out: only two manufacturers (besides Roland) mentioned GS’s
“variations” scheme, and the rest use their own structure. Yamaha has since
introduced a largely compatible structure with their XG format, but there are sufficient
variations between XG and GS (and GM) to require and additional document
describing this issue.

Additional Drum Sounds & Kits (Extensions to GM)
• Extra drum sounds (additions or variations to the GM Percussion Map) should not be

accessible while the device is in GM mode.
• In order to maintain some degree of standardization among GM devices, organization of

and access to variation sounds may be most appropriate if done in the manner of GS
and/or XG specifications.

Composer Recommendations: Composers of GM music files should not use variation kits
(via program changes, etc.) or extended drum notes unless absolutely sure that they will not
result in unacceptable degradation of the performance on dis-similar instruments. For
example, the gentle Roland brush snare sound will be replaced with a strong snare hit on
most GM devices, which would generally be unacceptable to the composer.

Details:
The GS approach to drum kits is very popular: 7 devices provide extra sets in
conformity with the GS guidelines, and subsets or approximations of the GS sets are
found in 8 more. Only 2 devices reported that they had no additional drum sounds
besides the standard GM set. But how the additional sets are accessed is not as clear
cut. 6 use Program Change commands (as per GS), 2 use Bank Select by itself (a
practice specifically prohibited by the MIDI Specification), and 2 use a combination of
the two. Almost all devices use notes outside of the GM Percussion Map range to access
additional sounds, but it is unclear if there is any consensus therein.

Response to Note-off on Channel 10 (Percussion)
• Only those two GM percussion sounds whose duration is most naturally under player

control — long whistle and long Guiro — should respond to note-offs on Channel 10.
Note: The MIDI Specification requires that all Note-On commands have a
corresponding Note-Off command, and it is assumed that all MIDI transmitters will
comply with this requirement)

Composer Recommendations: There is little harm (musically speaking) sending a note-off
message to a drum (one-shot) that will be ignored, but composers of GM music files should
also assume that these messages may not work on all GM devices and author accordingly.

Details:

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: GM Synthesizer Issues

P a g e 1 6

Description of Issue:

In musical context, percussion sounds are typically of defined length, in comparison to
other instruments which have a variable sustain segment under composer control. Are
any of the percussion sounds in a GM device cut off upon receipt of a Note-off
command? This is of particular importance if composing percussion tracks with drum
pads which have a short, fixed-length, note duration.

Findings:

Only 3 of the 14 respondents said that any of their GM percussion sounds respond to
note-off commands. (Somewhat more said this applies to non-GM percussion sounds.)
The sounds in question, when they were specified, included whistle, long Guiro, and
open cymbals, with no apparent consistency.

Mutually-Exclusive Percussion
• Two mutually-exclusive groups for drum sounds are recommended: open/pedal/closed hi-

hat and open/mute triangle. Additional groups of mutually-exclusive drum sounds may
be included as long as those groupings make sense musically.

Composer Recommendations: Composers of GM music files can assume that the two above-
named mutually-exclusive groups are supported by GM devices but should not assume the
presence of other groups.

Details:
Description of Issue:

In order to support realism expectations, manufacturers set up certain groups of
sounds in the percussion set to be mutually exclusive, so that playing a sound in the
group cuts off any other previously-played sound in the group (as would naturally
happen).

Findings:

12 of the 14 respondents use one or more mutually-exclusive groups for their GM
percussion sounds. GS, for example, mandates several mutually exclusive groups:
high/low whistle, long/short Guiro, “open/mute” cuica, open/mute triangle, and
open/pedal/closed hi-hat. (Another pair, open/mute surdo, uses sounds not included in
the GM Percussion Map.) Besides Roland, one other manufacturer includes all of the
GS groups. 2 others include 3 of the GS groups, and 2 more include 2 of the GS groups
(specifically hi-hat and triangle). 5 more have mutually-exclusive groups but did not
specify what they were, and one allows users to define their own groups.

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: MMA GM Music File Issues

P a g e 1 7

File Formats and Editing Capability
• SMFs should be considered editable, and if composers want their files not to be editable by

users, they should use proprietary formats.
• Files which may be edited should avoid Program Changes within the body of the music,

which could be lost in editing, resulting in playback with incorrect sounds. Likewise,
authors should avoid controllers or notes hanging over bar lines, which could result in
unexpected articulation and stuck notes after editing.

The issue: What provisions need to be made so that GM files can be edited by users? If a
GM music file is user-editable, how can you enable chunks of files to be moved around
while making sure that Program Changes and controller messages are preserved in their
correct places? Can editing be prevented?

Findings: Exactly half of the software respondents said their files were not editable by
users. Of these, 4 distribute files in a proprietary (i.e., non-translatable) format, and 5 are
read-only files, either on a CD-ROM, hidden in a CD-ROM or Windows Resource, or in an
unspecified form. One respondent puts a copyright notice meta-event into their files.

Of the files that are editable, all are provided in SMF format. Only one respondent stated
their files are in Type 1 format, and one stated their files are in Type 0 format; the rest
did not specify a type.

Only one respondent said that documentation is included with their software explaining
the issues for editing and providing instructions on how to deal with them. One
respondent said “it should be up to the sequencer software”.

MIDI Player Control: Starting in the middle
• MIDI “player” or driver software should determine whether or not a GM music file can be

started in the middle.
• Players should be capable of chasing controllers and program changes, either by scanning

the file backwards from the starting point (“walking” the file) or by using special setup
files. If using the former method, the scanning code must be fast and have a high level of
priority in order to avoid long delays.

The issue: Since MIDI is a serial data stream, special care must be taken when starting a
sequence in the middle, so that crucial commands that normally appear at the beginning
of the sequence, such as Program Changes and controller settings, are not overlooked
when the music starts to play.

Findings: 6 software application respondents had a simple answer to this: they don’t
allow files to be started in the middle. Of those who do, 5 said before they play the file
they scan (or “walk”) the file backwards from the designated starting point, and transmit
appropriate commands as they are found. 3 allow users to start the files at specific
markers, and when they do, a special short setup file containing the necessary
information is transmitted first.

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: MMA GM Music File Issues

P a g e 1 8

File Data: Prep bars
• Prep bars should not be used where synchronization and exact starting time is an issue.
• Prep bars should be as short as possible (a few clock ticks should suffice in most situations)

The issue: It can be helpful for a GM sequence to be preceded with a preparatory (or
“prep”) bar of some length so that the Turn GM System On message can be transmitted
and initial values for controllers, Program Changes, pitchbend, Aftertouch, and other
parameters can be set before the music starts to play. But prep bars can cause problems
when there are timing issues to be considered, such as if MIDI file is used in sync with
some visual. Should such a bar be used, and, if so, how long should it be?

Findings: There is a lot of variation found in how prep bars are used. Of those who use
them, 6 use one complete 4/4 bar or more, while 4 try to minimize the amount of time
necessary to start a file by making the prep bar very short, measured in a few clock “ticks”
— for example, 9 ticks where 1 tick = 1/480 beat.

Obviously if music is to be synced with visuals or used for scene transitions — prep bars
should be not be used, or at least kept as short as possible. Composers should bear in
mind that rarely will all 16 MIDI Channels be called upon to play on the downbeat of a
sequence, so only the tracks playing at the beginning need to be initialized right away,
and the time required to do that in most cases will be negligible. The initialization
information for other tracks can be transmitted after the sequence starts, as long as it is
sent before they need to play.

File Data: Pickup bars
• Pickup bars should be as brief as possible, set to the minimal time signature required

(generally, 1/4 or 3/8 will suffice).
• A time signature meta-event should be inserted at the end of the pickup bar in order to set

the correct time signature for the body of the music to follow.

The issue: Often a sequence will start out with a “pickup” — a group of notes shorter than
a bar line that precede the first bar, such as the three eighth-notes at the beginning of
“Seventy-Six Trombones.” Should this pickup be in a short bar by itself, or should it be
the last part of a standard-length bar which has blank space at the beginning?

Findings: 5 software respondents said they use a full bar at the beginning of the
sequence, and leave the beats before the pickup blank. 4 said they give the pickup bar its
own time signature, equivalent to its length (in the above example, 3/8), and then change
the time signature for subsequent bars. 4 said that it depended on the situation, and 3 on
whether the start time or synchronization of the sequence was critical. One said they
don’t concern themselves with the barlines at all, and just “let the notes fall where they
may”.

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: MMA GM Music File Issues

P a g e 1 9

File Data: SMF Marker Event
• Markers (an SMF Meta Event) may be used for any purpose, but a specific response to

markers should not be assumed.

The issue: The correct use of Markers (Meta-Events under the Standard MIDI Files
Recommended Practice) is unclear in the SMF document. How are they being used?

Findings: 3 software respondents said they use markers along with a short setup file (as
described in the previous topic) for alternate starting points. 2 use them to synchronize
sound effects, visuals, etc. (audio and other non-MIDI events are being considered for
inclusion in a future version of SMF). 2 use them for internal purposes, and 2 will use
them in their products’ “next evolution.” One respondent uses them to designate loop
points, and another puts them on a separate track where they denote program changes
(no details were given on this rather odd statement).

File Data: Other Meta-Events
• Copyright information (text) should be placed in the MIDI file using the Copyright Meta-

Event.
• Song Titles should be placed on the MIDI file using the Sequence/Track Name event on the

first track or in a Type 0 file.
• Meta-Events should not be used for proprietary purposes (except when used in closed

systems such as video game consoles where the files can not be played on an incompatible
device.)

The issue: How are other Meta-Events being used?

Findings: The largest number of respondents by far — 7 — are using the Copyright
Notice Meta-Event. One other is putting a copyright notice within the track name list. 5
are using Meta-Events for unspecified or internal purposes. 4 are using Lyrics. 3 are
using Track Names, and 3 are using “Titles,” presumably Sequence/Track Name on the
first track or in a Type 0 file. One is using Cue Points for alternate starting points.

File Data: Channel Assignments
• No specific assignment scheme (including the many GS, XG and variants) can be

recommended as a sole scheme for all musical performances. However, new Meta-Events
could be added to the Standard MIDI File Recommended Practice in future to identify
parts regardless of Channel, allowing file players to intelligently map parts to playback
Channels as needed to provide the best possible user interaction.

The issue: Besides the restriction that Channel 10 be reserved for key-based percussion,
are there any other ways to designate Channels for specific instruments in a General

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: MMA GM Music File Issues

P a g e 2 0

MIDI sequence that make sense? That way, a user (or a hardware file player) can know
how tracks are assigned (and which to mute or solo, for example)?

Findings: 11 respondents said they use no special designations for MIDI Channels in a
sequence. Of the others, each had their own idea of how Channels should be used.

Since each file is designed for a different purpose, there is no assignment method which
would serve all users. Instead, a recent proposal is that the file could be encoded with
information which indicates which of the common musical “parts” appears on which
Channels at which times. For example, the file could include an event which reports that
following segment on Channel 2 contains the Bass Part, while the segment on Channel 3
is the Right-Hand Piano Part, Channel 4 is the Left-Hand Piano, etc. This can be changed
throughout the piece as necessary, and the parts may be assigned to totally different
Channels in another piece. This will enable devices (and users) to easily determine what
parts to play/mute (etc.) in music-minus-one, music education, and other applications.
However, this is not yet an MMA recommended practice.

File Data: Multiple Devices (non-GM hardware)
• Authors wishing to address multiple platforms should create different files for the different

platforms.
• Files authored to Microsoft’s (now defunct) “Dual-Mode” format should be marked using

Microsoft’s Mark-MIDI utility.
• Files authored for Roland GS or Yamaha XG should include the appropriate (GS or XG)

reset events, but the GM System On message is still required for all GM devices. See
Roland or Yamaha guidelines for the correct usage of these messages.

• MIDI file players should be capable of remapping music files based upon the identity and
configuration of the target device (new Meta-Events may be added to the Standard MIDI
File Recommended Practice for this purpose).

The issue: Composers writing for PC applications may need to write music that can be
played on multiple (not just GM) formats. Should they combine all of the formats they
want to address in one file.

Findings: Apparently there are many ways to address this issue. Three respondents
produce different versions for the various platforms they want to address. Three depend
on system software (i.e. Microsoft’s “MIDI Mapper”) to send data to different devices.
Three respondents use proprietary Channel-mapping schemes and/or voice-allocation
algorithms. One respondent uses a single format and depends on the software driver to
mimic General MIDI on other formats. Yet another respondent claims that tracks for
different platforms are assignable by a port event.

Microsoft’s Multimedia PC (MPC) specification for Windows 3.0 and 3.1 called for the use
of a “Mark-MIDI” flag to specify if the file included “Base” (Channels 13-16, with
percussion on 16) or “Extended” (Channels 1-10, with percussion on 10) performance data
(or both). The Windows 95 multimedia documentation, however, recommends that this

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

Re: MMA GM Music File Issues

P a g e 2 1

flag be omitted from music files, since GM Level 1 (using all 16 Channels, with percussion
on 10) is specified as being the minimum performance standard.

Microsoft’s MIDI File Player (MCI Sequencer) has been written to recognize MPC
formatted files and ignore the base data in favor of playing only the extended data on the
GM device (eliminating the need to disable certain Channels to avoid doubling-up of
instruments). This practice should be followed by all file players, and be extended to apply
to GS and XG file formats as well.

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

P a g e 2 2

APPENDIX A:

Voice editing

The important issue of GM voice and drum sound editing may become standardized in the
future, at which time RPNs will likely be assigned for that purpose. Until that time,
manufacturers are free to assign NRPNs (the “proprietary” equivalent of RPNs) for this
purpose. The following NRPNs are common to both GS and XG, but will also likely have an
unpredictable effect, or no effect, on GM products:

MSB LSB Description

--
01h 08h Vibrato rate
01h 09h Vibrato depth
01h 0Ah Vibrato delay
01h 20h Filter cutoff frequency
01h 21h Filter resonance
01h 63h Envelope attack rate
01h 64h Envelope decay rate
01h 66h Envelope release rate
18h rr Pitch coarse of specified drum sound
1Ah rr Level of specified drum sound
1Ch rr Panpot of specified drum sound
1Dh rr Reverb send level of specified drum sound
1Eh rr Chorus send level of specified drum sound

Note: rr = drum sound note number

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

P a g e 2 3

APPENDIX B:
Fat Labs Instrument Testing Specifications

The following outlines the testing requirements for Fat Labs Certification. Fat Labs certifies
sound cards to be compatible with music written for GM instruments (specifically the Roland
Sound Canvas). Their testing process is provided here as a reference for companies curious
about what has already been done to validate GM compatibility, but is not an endorsement by
the MMA of this particular process.

General

a. The instrument system must comply with the Level 1 General MIDI spec.
b. Polyphony lower than 24 simultaneous voices will be acceptable if listening to test files

reveals that the formula used for dynamic voice allocation gives a suitable performance.
c. The instrument system must default at power-up to General MIDI mode.
d. The instrument system must default at power-up to a bend range equal to 2 half-steps.
e. The instrument system must respond to controllers for Mod Wheel, Volume, Pan, Sustain

Pedal, Pitch Bend Range, and All Notes Off. If it is claimed that the instrument system has
reverb and chorus, it must respond to controllers for those effects as well.

f. The instrument system must respond to Controller 7 while notes are sustained.
g. For uses in advanced DOS games, the instrument system must have an MPU-401 interface

in hardware, or must place minimal enough demands on the host system that we can be
reasonably sure that all known software using General MIDI will work with the instrument
system.

Individual Timbres
After the instrument system is set to a reference level and tuning standard, each timbre will be
subjected to the following tests:
a. Volume at Velocity 64, Different Octaves. For each octave (4 are tested: middle C, 2 octaves

below, 2 octaves above, and one note that floats to 4 octaves above or below middle C,
depending on the expected range of the instrument), a velocity offset of not more than ±5
must produce a perceived volume that matches the Sound Canvas for most listeners.

b. Volume at C3, Different Velocities. For each velocity (3 are tested: 17, 64, and 127), a
velocity offset of not more than ±5 must produce a perceived volume that matches the Sound
Canvas for most listeners.

c. Envelope. Time values for A, D, and R must be within 10% of the Sound Canvas's; for
sustain, a velocity offset of not more than ±5 must produce a perceived volume that matches
the Sound Canvas for most listeners.

d. Intonation. Intonation should be within ±5 cents of the Sound Canvas. For timbres such as
"Honky-Tonk Piano," that vary from the reference pitch, the instrument may be less detuned
than the Sound Canvas.

G M L e v e l 1 D e v e l o p e r G u i d e l i n e s - S e c o n d R e v i s i o n

P a g e 2 4

Percussion
Each percussion instrument will be subjected to the following tests:
a. Volume at C3, Different Velocities. For each velocity (3 are tested: 17, 64, and 127), a

velocity offset of not more than ±5 must produce a perceived volume that matches the Sound
Canvas for most listeners.

b. Envelope. Time values for A, D, and R must be within 10% of the Sound Canvas's; for
sustain, a velocity offset of not more than ±5 must produce a perceived volume that matches
the Sound Canvas for most listeners.

c. Panning. Percussion instruments must be panned to produce a perceived placement that,
for most listeners, matches that of the Sound Canvas.

APPENDIX

MIDI 1.0 Detailed Specification Addenda [post 1996]
as of December 2013

• The following changes/additions were approved by MMA/AMEI since the "96.1 Second Edition"
publication:

o Response to Reset All Controllers
o Response to Data Increment/Decrement Controller
o Sound Controller Defaults (Revised)
o Renaming of CC91 and CC93
o File Reference SysEx Message (.pdf)
o Sample Dump Size/Rate/Name Extensions (.pdf)
o Controller Destination SysEx Message (.pdf)
o Key-based Instrument Controller SysEx Message (.pdf)
o Global Parameter Control SysEx Message (.pdf)
o Master Fine/Course Tuning SysEx Message (.pdf)
o Redefinition of RPN01 and RPN02 (Channel Fine/Course Tuning)
o RPN05 Modulation Depth Range (.pdf)
o Extension 00-01 to File Ref SysEx Message (.pdf)
o Default Pan Formula
o High Resolution Velocity Prefix (.pdf)
o Three Dimensional Sound Controllers (.pdf)

• These changes/additions were made to the SMF Specification since the "96.1 Second Edition" publication:

o SMF Lyric Events Definition
o SMF Device/Program Name Meta-events
o SMF Language and Display Extensions
o XMF Patch Prefix Meta Event

• These changes/additions were made to the MIDI Tuning Specification since the "96.1 Second Edition"

publication:
o Scale/Octave Tuning w/Defaults
o MIDI Tuning Bank/Dump Extensions

• The General MIDI Specification was updated to Level 2, and a General MIDI "Lite" version (intended for

cell phones) was also developed. See the GM section of www.midi.org for more details.

• Note: In addition to the above, MMA has since published the following additional Specifications and
Recommended Practice documents which are available separately:

o Downloadable Sounds (DLS) (including DLS, DLS2, and Mobile DLS)
o MIDI for IEEE-1394 (pdf)
o eXtensible Music Format (XMF) (including XMF, mobile XMF, and related RPs)
o Scalable Polyphony MIDI (SP-MIDI)
o MIDI XML Names DTDs
o Mobile Phone Control (pdf)
o Mobile Musical Instrument (pdf)
o MIDI Visual Control (pdf)

Please visit our Specifications page on www.midi.org for the latest information and links
to all current MMA Specifications and Recommended Practices.

	Complete MIDI
	Contents
	Tutorial on MIDI and Music Synthesis
	MIDI 1.0 Detailed Specification
	MIDI Time Code
	Standard MIDI Files
	General MIDI Level 1
	MIDI Show Control version 1.1
	MIDI Machine Control
	General MIDI Level 1 Developer Guidelines
	Appendix

